
INF121:
Functional Algorithmic and Programming

Lecture 1: Introduction, simple expressions and simple types

Academic Year 2011 - 2012

The right vision about computer science

Computer science is NOT about:
I using a computer
I fix a computer
I using software or internet (Facebook, Google, Word, . . .)

Among other things, computer science is about:
I understanding computers
I understanding computation
I designing (efficient) methods to compute

“Computer science is no more about computers
than astronomy is about telescopes.”

Edsger Wybe Dijkstra

1 / 21

The right vision about computer science

Computer science is NOT about:
I using a computer
I fix a computer
I using software or internet (Facebook, Google, Word, . . .)

Among other things, computer science is about:
I understanding computers
I understanding computation
I designing (efficient) methods to compute

“Computer science is no more about computers
than astronomy is about telescopes.”

Edsger Wybe Dijkstra

1 / 21

About algorithms and algorithmic
A central and basic concept in computer science

Algorithmic consists in:
I Automating methods purposed to solve a problem
I Study correctness, completeness, and efficiency of a solution

Four styles (among others) can be used to express algorithms:
I imperative-style: a list of actions
I object-oriented: objects and their interactions are first-class citizens
I logical languages: predicates are first-class citizens
I functional-style: closer to mathematical concepts

Then we turn algorithms into programs using a programming language

2 / 21

About algorithms and algorithmic
A central and basic concept in computer science

Algorithmic consists in:
I Automating methods purposed to solve a problem
I Study correctness, completeness, and efficiency of a solution

Four styles (among others) can be used to express algorithms:
I imperative-style: a list of actions
I object-oriented: objects and their interactions are first-class citizens
I logical languages: predicates are first-class citizens
I functional-style: closer to mathematical concepts

Then we turn algorithms into programs using a programming language

2 / 21

Imperative vs functional algorithmic styles
On examples

Example (GCD of two integers a and b)
Can be computed using the remainder of the euclidian division of a by b

Imperative style (C) Functional style (OCaml)
int gcd (int a, int b) {

int r;
while ((r=a%b)!=0) {

a = b;
b = r;

}
return b;

}

...

...

...

let rec gcd (a:int) (b:int):int
= let r = a mod b in

if r = 0 then b
else gcd b r

I code is shorter
I nothing is modified
I closer to the mathematical procedure

3 / 21

Imperative vs functional algorithmic styles
On examples

Example (GCD of two integers a and b)
Can be computed using the remainder of the euclidian division of a by b

Imperative style (C) Functional style (OCaml)
int gcd (int a, int b) {

int r;
while ((r=a%b)!=0) {

a = b;
b = r;

}
return b;

}

...

...

...

let rec gcd (a:int) (b:int):int
= let r = a mod b in

if r = 0 then b
else gcd b r

I code is shorter
I nothing is modified
I closer to the mathematical procedure

3 / 21

Imperative vs functional algorithmic styles
On examples

Example (Factorial of an integer)
Imperative style (C) Functional style (OCaml)
int fact (int n) {

int cpt; int res;
if (n==0) {return 1;}
else {

res = 1;
for (i=1;i<=n;i++) {

res = res *i;
}
return res;

}

...

...

...

let rec fact (n:int):int =
if (n=0 || n=1) then 1
else n * fact (n-1)

I code is shorter
I exactly the mathematical definition
I easier to understand

4 / 21

Imperative vs functional algorithmic styles
On examples

Example (Factorial of an integer)
Imperative style (C) Functional style (OCaml)
int fact (int n) {

int cpt; int res;
if (n==0) {return 1;}
else {

res = 1;
for (i=1;i<=n;i++) {

res = res *i;
}
return res;

}

...

...

...

let rec fact (n:int):int =
if (n=0 || n=1) then 1
else n * fact (n-1)

I code is shorter
I exactly the mathematical definition
I easier to understand

4 / 21

Imperative vs functional algorithmic styles
The killing example

Example (Yielding affine functions)
Given two integers a and b, compute/return the function x 7→ a ∗ x + b

Imperative style (C) Functional style (OCaml)

a nightmare...
(3 pages of code)

...

...

...

let affine (a:int) (b:int):int -> int
= fun x -> a*x+b

5 / 21

Le language [O]Caml

[O]Caml est un langage de programmation de conception récente qui réussit à être à la
fois très puissant et cependant simple à comprendre. Issu d’une longue réflexion sur
les langages de programmation, [O]Caml s’organise autour d’un petit nombre de
notions de base, chacune facile à comprendre, et dont la combinaison se révèle
extrêmement féconde. La simplicité et la rigueur de [O]Caml lui valent une popularité
grandissante dans l’enseignement de l’informatique, en particulier comme premier
langage dans des cours d’initiation à la programmation. Son expressivité et sa
puissance en font un langage de choix dans les laboratoires de recherche [. . .].
En bref, [O]Caml est un langage facile avec lequel on résout des problèmes difficiles.

source: “Le langage Caml” (Leroy, Weis)

6 / 21

Le language [O]Caml

[O]Caml est un langage de programmation de conception récente qui réussit à être à la
fois très puissant et cependant simple à comprendre. Issu d’une longue réflexion sur
les langages de programmation, [O]Caml s’organise autour d’un petit nombre de
notions de base, chacune facile à comprendre, et dont la combinaison se révèle
extrêmement féconde. La simplicité et la rigueur de [O]Caml lui valent une popularité
grandissante dans l’enseignement de l’informatique, en particulier comme premier
langage dans des cours d’initiation à la programmation. Son expressivité et sa
puissance en font un langage de choix dans les laboratoires de recherche [. . .].
En bref, [O]Caml est un langage facile avec lequel on résout des problèmes difficiles.

source: “Le langage Caml” (Leroy, Weis)

6 / 21

Le language [O]Caml and Functional languages in general
in a nutshell

Result of the fruitful collaboration of mathematicians and computer scientists:
I they have the rigor of mathematics
I they rely on few but powerful concepts (λ-calculus)
I they are as expressive as other languages (Turing complete)
I they favor efficient, consise and effective algorithms
I they insist on typing

Example (OCaml in nature)

. . .

7 / 21

About OCaml and functional languages in general
Features and Advantages

Features:

Functional: I functions are first-class values and citizens
I highly flexible with the use of functions: nesting, passed

as argument, storing

strongly typed: I everything is typed at compile time
I syntactic constraints on programs

type inference: “types automatically computed from the context”

polymorphic: “generic functions”

pattern-matching: “a super if”

Advantages:

Rigorous: closer to mathematical concepts

More concise: less mistakes

Typing is a central concept: better type-safe than sorry

8 / 21

About OCaml and functional languages in general
Features and Advantages

Features:

Functional: I functions are first-class values and citizens
I highly flexible with the use of functions: nesting, passed

as argument, storing

strongly typed: I everything is typed at compile time
I syntactic constraints on programs

type inference: “types automatically computed from the context”

polymorphic: “generic functions”

pattern-matching: “a super if”

Advantages:

Rigorous: closer to mathematical concepts

More concise: less mistakes

Typing is a central concept: better type-safe than sorry

8 / 21

Primitive types and basic expressions
int: the integers

The set of signed integers Z, e.g., −10, 2, 0, 3, 9 . . .

Several alternate forms:

ddd . . . an int literal specified in decimal
0oooo . . . an int literal specified in octal
0bbbb. . . an int literal specified in binary
0xhhh . . . an int literal specified in hexadecimal

where d (resp. o, b, h) denotes a decimal (resp. octal, binary, hexadecimal)
digit

Usual operations:
−i negation
i + j addition
i−j substraction
i ∗ j multiplication
i / j division
i mod j remainder

lnot bit-wise inverse
i lsl j logical shift left
i lsr j logical-shift right
i land j bitwise-and
i lor j bitwise-or
i lxor j bitwise exclusive-or

DEMO: integers

9 / 21

Primitive types and basic expressions
int: the integers

The set of signed integers Z, e.g., −10, 2, 0, 3, 9 . . .

Several alternate forms:

ddd . . . an int literal specified in decimal
0oooo . . . an int literal specified in octal
0bbbb. . . an int literal specified in binary
0xhhh . . . an int literal specified in hexadecimal

where d (resp. o, b, h) denotes a decimal (resp. octal, binary, hexadecimal)
digit

Usual operations:
−i negation
i + j addition
i−j substraction
i ∗ j multiplication
i / j division
i mod j remainder

lnot bit-wise inverse
i lsl j logical shift left
i lsr j logical-shift right
i land j bitwise-and
i lor j bitwise-or
i lxor j bitwise exclusive-or

DEMO: integers

9 / 21

Primitive types and basic expressions
float: the real numbers

The set of real numbers R (an approximation actually): dynamically scaled
floating point numbers
Requires at least either:

I a decimal point, or
I an exponent (base 10), prefixed by an e or E

Remark Not exact computation �

Example
0.2, 2e7, 1E10, 10.3E2, 33.23234E(−1.5), 2.

Usual operators:

−.x floating-point negation
x +. y floating-point addition
x −. y floating-point subtraction
x ∗. y float-point multiplication
x /. y floating-point division
int_of_float x float to int conversion
float_of_int x int to float conversion

DEMO: float

10 / 21

Primitive types and basic expressions
float: the real numbers

The set of real numbers R (an approximation actually): dynamically scaled
floating point numbers
Requires at least either:

I a decimal point, or
I an exponent (base 10), prefixed by an e or E

Remark Not exact computation �

Example
0.2, 2e7, 1E10, 10.3E2, 33.23234E(−1.5), 2.
Usual operators:

−.x floating-point negation
x +. y floating-point addition
x −. y floating-point subtraction
x ∗. y float-point multiplication
x /. y floating-point division
int_of_float x float to int conversion
float_of_int x int to float conversion

DEMO: float

10 / 21

Primitive types and basic expressions
bool: the Booleans

The set of truth-values B = {tt, ff}

Some operators on Booleans:

not logical negation
&& logical conjunction (short-circuit)
|| logical disjunction (short-circuit)

DEMO: operators using Booleans

11 / 21

Primitive types and basic expressions
bool: the Booleans

Some operations returning a Boolean

x = y x is equal to y
x == y x is identical to y
x != y x is not identical to y
x <> y x is not equal to y
x < y x is less than y
x <= y x is not greater than y
x >= y x is not lesser than y
x > y x is greater than y

DEMO: operators returning Booleans

Remark Distinction between == and =:
I = is structural equality (compare the structure of arguments)
I == is physical equality (check whether the arguments occupy the same

memory location)
I Returns the same results on basic types: int, bool, char

Hence e1 == e2 implies e1 = e2 �

DEMO: illustration of the difference between = and ==

12 / 21

Primitive types and basic expressions
bool: the Booleans

Some operations returning a Boolean

x = y x is equal to y
x == y x is identical to y
x != y x is not identical to y
x <> y x is not equal to y
x < y x is less than y
x <= y x is not greater than y
x >= y x is not lesser than y
x > y x is greater than y

DEMO: operators returning Booleans

Remark Distinction between == and =:
I = is structural equality (compare the structure of arguments)
I == is physical equality (check whether the arguments occupy the same

memory location)
I Returns the same results on basic types: int, bool, char

Hence e1 == e2 implies e1 = e2 �

DEMO: illustration of the difference between = and ==

12 / 21

Primitive types and basic expressions
char: the Characters

The set of characters Char ⊆ {′a′,′ b′, . . . ,′ z′,′ A′, . . . ,′ Z ′}
Contains also several escape sequences:

’\\’ backslash character itself
’\’’ single-quote character
’\t’’ tabulation character
’\r’’ carriage return character
’\n’’ new-line character
’\b’ backspace character

Conversion from int to char (and vice-versa): a char can be represented
using its ASCII code:

I Char.code: returns the ASCII code of a character
I Char.chr: returns the character with the given ASCII code

From lower to upper-case and vice-versa:
I Char.lowercase
I Char.uppercase

DEMO: char

13 / 21

Primitive types and basic expressions
char: the Characters

The set of characters Char ⊆ {′a′,′ b′, . . . ,′ z′,′ A′, . . . ,′ Z ′}
Contains also several escape sequences:

’\\’ backslash character itself
’\’’ single-quote character
’\t’’ tabulation character
’\r’’ carriage return character
’\n’’ new-line character
’\b’ backspace character

Conversion from int to char (and vice-versa): a char can be represented
using its ASCII code:

I Char.code: returns the ASCII code of a character
I Char.chr: returns the character with the given ASCII code

From lower to upper-case and vice-versa:
I Char.lowercase
I Char.uppercase

DEMO: char

13 / 21

Primitive types and basic expressions
unit: the singleton type

Simplest type that contains one element ()

Used by side-effect functions (every function should return a value)

Remark Similar to type void in C �

Rarely used!

DEMO: type unit

14 / 21

More on operators
Operators have a type

Constraining the arguments and results:
I order
I number

↪→ the “signature of the operator”

Operators are functions, i.e., values (hence they have a type).
Consider an operator op:

arg1 type1

arg2 type2

.
argn typen

result typer

⇒
type1 → type2 → . . .→ typen → typer

=
type of op

Example (Types of some operators)

+ : int→ int→ int

= : int→ int→ bool

< : int→ int→ bool

. . .

DEMO: type of operators

15 / 21

More on operators
Operators have a type

Constraining the arguments and results:
I order
I number

↪→ the “signature of the operator”
Operators are functions, i.e., values (hence they have a type).

Consider an operator op:

arg1 type1

arg2 type2

.
argn typen

result typer

⇒
type1 → type2 → . . .→ typen → typer

=
type of op

Example (Types of some operators)

+ : int→ int→ int

= : int→ int→ bool

< : int→ int→ bool

. . .

DEMO: type of operators

15 / 21

More on operators
Operators have a type

Constraining the arguments and results:
I order
I number

↪→ the “signature of the operator”
Operators are functions, i.e., values (hence they have a type).
Consider an operator op:

arg1 type1

arg2 type2

.
argn typen

result typer

⇒
type1 → type2 → . . .→ typen → typer

=
type of op

Example (Types of some operators)

+ : int→ int→ int

= : int→ int→ bool

< : int→ int→ bool

. . .

DEMO: type of operators

15 / 21

More on operators
Operators have a type

Constraining the arguments and results:
I order
I number

↪→ the “signature of the operator”
Operators are functions, i.e., values (hence they have a type).
Consider an operator op:

arg1 type1

arg2 type2

.
argn typen

result typer

⇒
type1 → type2 → . . .→ typen → typer

=
type of op

Example (Types of some operators)

+ : int→ int→ int

= : int→ int→ bool

< : int→ int→ bool

. . .

DEMO: type of operators

15 / 21

More on operators
precedences and associativity

Remainder about associativity:
I right associativity: a op b op c means a op (b op c)
I left associativity: a op b op c means (a op b) op c

Precedences of operators on the basic types, in increasing order:

Operators Associativity
|| && left
= == != <> < <= > >= left
+ − +. −. left
* / *. /. mod land lor lxor left

lsl lsr asr left
lnot left
− −. right

16 / 21

More on Typing
About OCaml type system

Typing is a mechanism/concept aiming at:
I avoiding errors
I favoring abstraction
I checking that expressions are sensible, e.g.

I 1 + yes
I true ∗ 42

Type checking in OCaml: OCaml is strictly and statically typed
I strict: no implicit conversion between types nor type coercion
I static: checking performed before execution

Type inference: for any expression e, OCaml (automatically and
systematically) computes the type of e:

Example (Type system on integers and floats)
I Two sets of distinct operations:

I integers (+,−,∗)
I floats (+.,−., ∗.)

I No implicit conversion between them, e.g., 1+ 0.42 yields an error

17 / 21

More on Typing
About OCaml type system

Typing is a mechanism/concept aiming at:
I avoiding errors
I favoring abstraction
I checking that expressions are sensible, e.g.

I 1 + yes
I true ∗ 42

Type checking in OCaml: OCaml is strictly and statically typed
I strict: no implicit conversion between types nor type coercion
I static: checking performed before execution

Type inference: for any expression e, OCaml (automatically and
systematically) computes the type of e:

Example (Type system on integers and floats)
I Two sets of distinct operations:

I integers (+,−,∗)
I floats (+.,−., ∗.)

I No implicit conversion between them, e.g., 1+ 0.42 yields an error

17 / 21

More on Typing
About OCaml type system

Typing is a mechanism/concept aiming at:
I avoiding errors
I favoring abstraction
I checking that expressions are sensible, e.g.

I 1 + yes
I true ∗ 42

Type checking in OCaml: OCaml is strictly and statically typed
I strict: no implicit conversion between types nor type coercion
I static: checking performed before execution

Type inference: for any expression e, OCaml (automatically and
systematically) computes the type of e:

Example (Type system on integers and floats)
I Two sets of distinct operations:

I integers (+,−,∗)
I floats (+.,−., ∗.)

I No implicit conversion between them, e.g., 1+ 0.42 yields an error

17 / 21

More on Typing
About OCaml type system

Typing is a mechanism/concept aiming at:
I avoiding errors
I favoring abstraction
I checking that expressions are sensible, e.g.

I 1 + yes
I true ∗ 42

Type checking in OCaml: OCaml is strictly and statically typed
I strict: no implicit conversion between types nor type coercion
I static: checking performed before execution

Type inference: for any expression e, OCaml (automatically and
systematically) computes the type of e:

Example (Type system on integers and floats)
I Two sets of distinct operations:

I integers (+,−,∗)
I floats (+.,−., ∗.)

I No implicit conversion between them, e.g., 1+ 0.42 yields an error

17 / 21

More on Typing
About OCaml type system (ctd)

OCaml is a safe programming language:
I Programs never go wrong at runtime
I Easier to write correct programs: many errors are detected

Remark Comparison with C:
I C is weakly typed: values can be coerced
I a lot of runtime errors, e.g., segmentation-fault, bus-error, etc. . .

�

“Better type-safe than sorry”

18 / 21

The language constructs
if . . . then . . . else . . .

An expression defined using an alternative (or a conditional) control structure

if cond then expr1 else expr2

I the result is a value
I cond should be a Boolean expression
I expr1 and expr2 should be of the same type

Remark The else branch cannot be omitted unless the whole expr1 is of
type unit (hence the whole expression is of type unit) �

DEMO: if. . . then. . . else. . .

19 / 21

Running your code
Compilation vs Interpretation

Two ways to interact/evaluate/execute your code: compilation and interactive
interpretation

Compiling:
I Place your program in a .ml file
I Use one of the compilers:

I ocamlc: compiles to byte-code
I ocamlopt: compiles to native machine code

Interpretation:
I Type ocaml

I Directly type your expression

Remark
I Byte-code is compiled faster but runs slower
I Native machine code is compiled slower but runs faster

�

DEMO: compiling vs interpreting, compiler options

20 / 21

Running your code
Compilation vs Interpretation

Two ways to interact/evaluate/execute your code: compilation and interactive
interpretation

Compiling:
I Place your program in a .ml file
I Use one of the compilers:

I ocamlc: compiles to byte-code
I ocamlopt: compiles to native machine code

Interpretation:
I Type ocaml

I Directly type your expression

Remark
I Byte-code is compiled faster but runs slower
I Native machine code is compiled slower but runs faster

�

DEMO: compiling vs interpreting, compiler options

20 / 21

Summary and Assignment

Summary

I Basic types and operations:
type operations constants

Booleans not, &&, || true, false
integers +,-,*,/,mod ..., -1, 0, 1, ...

floats +.,-.,*.,/. 0.4, 12.3, 16. , 64.

I if...then...else constcuct
I OCaml type system
I Compilation / Interpretation

Assignment 1

Check it out on the Moodle

21 / 21

