
INF121:
Functional Algorithmic and Programming

Lecture 3: Advanced types

Academic Year 2011 - 2012

In the previous episodes of INF 121

I Basic Types:
Type Operations Constants

Booleans not, &&, || true, false
Integers +,-,*,/,mod,,-1, 0, 1, ...

floats +.,-.,*.,/. 0.4, 12.3, 16. , 64.
char lowercase, code, ... ’a’, ’u’, ’A’, ...

I if ... then ... else ... conditional structure
I identifiers (local and global)
I defining and using functions

1 / 32

Modelling information/concepts

What is modelling?

Why modelling?

How to model?
I defining specific data types
I defining functions manipulating these data types

2 / 32

Modelling information/concepts

What is modelling?

Why modelling?

How to model?
I defining specific data types
I defining functions manipulating these data types

2 / 32

Modelling information/concepts

What is modelling?

Why modelling?

How to model?

I defining specific data types
I defining functions manipulating these data types

2 / 32

Modelling information/concepts

What is modelling?

Why modelling?

How to model?
I defining specific data types
I defining functions manipulating these data types

2 / 32

Defining a type

The general form

type t = ... (* possibly with constraints *)

Now we are going to see how we can define some more complex types using
existing types. . .

3 / 32

Outline

Synonym types

Enumerated types

Product types

Union/Sum types

Case study: Modelling 4 card games

Defining a synonym type

Motivations:
I context-specific types
I easier to remember
I re-use

General syntax:

type new_type = existing_type
(* possibly with informative usage constraints *)

Example (Soldes)

I type price = float (* > 0 *)

I type rate = int (* 0, ..., 99 *)
I Defining a function to reduce prices:

I Description: reducedPrice(p,r) is the price p reduced by r%
I Profile: reducedPrice: price ∗ rate→ price
I Examples: reducedPrice(100., 25) = 75.

(note that it is more meaningful than the “anonymous signature”
reducedPrice: float ∗ int→ float)

5 / 32

Defining a synonym type

Motivations:
I context-specific types
I easier to remember
I re-use

General syntax:

type new_type = existing_type
(* possibly with informative usage constraints *)

Example (Soldes)

I type price = float (* > 0 *)

I type rate = int (* 0, ..., 99 *)
I Defining a function to reduce prices:

I Description: reducedPrice(p,r) is the price p reduced by r%
I Profile: reducedPrice: price ∗ rate→ price
I Examples: reducedPrice(100., 25) = 75.

(note that it is more meaningful than the “anonymous signature”
reducedPrice: float ∗ int→ float)

5 / 32

Defining a synonym type

Motivations:
I context-specific types
I easier to remember
I re-use

General syntax:

type new_type = existing_type
(* possibly with informative usage constraints *)

Example (Soldes)

I type price = float (* > 0 *)

I type rate = int (* 0, ..., 99 *)
I Defining a function to reduce prices:

I Description: reducedPrice(p,r) is the price p reduced by r%
I Profile: reducedPrice: price ∗ rate→ price
I Examples: reducedPrice(100., 25) = 75.

(note that it is more meaningful than the “anonymous signature”
reducedPrice: float ∗ int→ float)

5 / 32

Outline

Synonym types

Enumerated types

Product types

Union/Sum types

Case study: Modelling 4 card games

Enumerated types

Motivation: How can we model/define/use:
I the family of a card? {♠,♥,♦,♣}
I the color of a card? {black,white}

From a mathematical point of view: sets defined extensively
↪→ i.e., by an explicit enumeration

Defining an enumerated type in OCaml:

type new_type = Value_1 | Value_2 | ... | Value_n

Remark
I Capital letters are mandatory
I new_type is said to be an enumerated type
I Value_1, ..., Value_n are said to be symbolic constants
I Value_1, ..., Value_n are of type new_type

I Implicit order between constants (consequence of the definition)

�

6 / 32

Enumerated types

Motivation: How can we model/define/use:
I the family of a card? {♠,♥,♦,♣}
I the color of a card? {black,white}

From a mathematical point of view: sets defined extensively
↪→ i.e., by an explicit enumeration

Defining an enumerated type in OCaml:

type new_type = Value_1 | Value_2 | ... | Value_n

Remark
I Capital letters are mandatory
I new_type is said to be an enumerated type
I Value_1, ..., Value_n are said to be symbolic constants
I Value_1, ..., Value_n are of type new_type

I Implicit order between constants (consequence of the definition)

�

6 / 32

Enumerated types

Motivation: How can we model/define/use:
I the family of a card? {♠,♥,♦,♣}
I the color of a card? {black,white}

From a mathematical point of view: sets defined extensively
↪→ i.e., by an explicit enumeration

Defining an enumerated type in OCaml:

type new_type = Value_1 | Value_2 | ... | Value_n

Remark
I Capital letters are mandatory
I new_type is said to be an enumerated type
I Value_1, ..., Value_n are said to be symbolic constants
I Value_1, ..., Value_n are of type new_type

I Implicit order between constants (consequence of the definition)

�

6 / 32

Enumerated types: Some examples
Painting / Modelling a card game

Example (Some paint colors)
type paint =

| Red
| Blue
| Yellow

Example (Types of a Card game)

type family = Spade | Heart
| Diamond | Club

type color = White | Black
DEMO: types of card game

Example (Color of a family)
Returning the color associated to a family card

I Description: colorFamily returns the family of a given card.
I Heart and Diamond are associated to White
I Spade and Club are associated to Black

I Signature: colorFamily: family→ color

I Examples: colorFamily Spade = Black, . . .

DEMO: Implementation of colorFamily

7 / 32

Enumerated types: Some examples
Painting / Modelling a card game

Example (Some paint colors)
type paint =

| Red
| Blue
| Yellow

Example (Types of a Card game)

type family = Spade | Heart
| Diamond | Club

type color = White | Black
DEMO: types of card game

Example (Color of a family)
Returning the color associated to a family card

I Description: colorFamily returns the family of a given card.
I Heart and Diamond are associated to White
I Spade and Club are associated to Black

I Signature: colorFamily: family→ color

I Examples: colorFamily Spade = Black, . . .

DEMO: Implementation of colorFamily

7 / 32

Enumerated types: Some examples
Painting / Modelling a card game

Example (Some paint colors)
type paint =

| Red
| Blue
| Yellow

Example (Types of a Card game)

type family = Spade | Heart
| Diamond | Club

type color = White | Black
DEMO: types of card game

Example (Color of a family)
Returning the color associated to a family card

I Description: colorFamily returns the family of a given card.
I Heart and Diamond are associated to White
I Spade and Club are associated to Black

I Signature: colorFamily: family→ color

I Examples: colorFamily Spade = Black, . . .

DEMO: Implementation of colorFamily
7 / 32

Back to the language constructs: pattern-matching
Your best friend

One of the most powerful feature of OCaml (and functional languages)

Pattern-matching: computation by case analysis
Specified by the following syntax:

match expression with
| pattern_1→ expression_1
| pattern_2→ expression_2

...
| pattern_n→ expression_n

Meaning:
I expression is matched against the patterns, i.e., its value is evaluated

and then compared to the patterns in order
↪→ “matching” depends on the type of expression!

I the expression associated to the first matching pattern is returned

Remark
I First vertical bar is optional
I may use _ as a wild-card (should be the last pattern)

�

8 / 32

Back to the language constructs: pattern-matching
Your best friend

One of the most powerful feature of OCaml (and functional languages)
Pattern-matching: computation by case analysis

Specified by the following syntax:

match expression with
| pattern_1→ expression_1
| pattern_2→ expression_2

...
| pattern_n→ expression_n

Meaning:
I expression is matched against the patterns, i.e., its value is evaluated

and then compared to the patterns in order
↪→ “matching” depends on the type of expression!

I the expression associated to the first matching pattern is returned

Remark
I First vertical bar is optional
I may use _ as a wild-card (should be the last pattern)

�

8 / 32

Back to the language constructs: pattern-matching
Your best friend

One of the most powerful feature of OCaml (and functional languages)
Pattern-matching: computation by case analysis
Specified by the following syntax:

match expression with
| pattern_1→ expression_1
| pattern_2→ expression_2

...
| pattern_n→ expression_n

Meaning:
I expression is matched against the patterns, i.e., its value is evaluated

and then compared to the patterns in order
↪→ “matching” depends on the type of expression!

I the expression associated to the first matching pattern is returned

Remark
I First vertical bar is optional
I may use _ as a wild-card (should be the last pattern)

�

8 / 32

Back to the language constructs: pattern-matching
Your best friend

One of the most powerful feature of OCaml (and functional languages)
Pattern-matching: computation by case analysis
Specified by the following syntax:

match expression with
| pattern_1→ expression_1
| pattern_2→ expression_2

...
| pattern_n→ expression_n

Meaning:
I expression is matched against the patterns, i.e., its value is evaluated

and then compared to the patterns in order
↪→ “matching” depends on the type of expression!

I the expression associated to the first matching pattern is returned

Remark
I First vertical bar is optional
I may use _ as a wild-card (should be the last pattern)

�

8 / 32

Back to the language constructs: pattern-matching
Your best friend

One of the most powerful feature of OCaml (and functional languages)
Pattern-matching: computation by case analysis
Specified by the following syntax:

match expression with
| pattern_1→ expression_1
| pattern_2→ expression_2

...
| pattern_n→ expression_n

Meaning:
I expression is matched against the patterns, i.e., its value is evaluated

and then compared to the patterns in order
↪→ “matching” depends on the type of expression!

I the expression associated to the first matching pattern is returned

Remark
I First vertical bar is optional
I may use _ as a wild-card (should be the last pattern)

�
8 / 32

(Pattern) Matching on an example
The card game

Example (colorFamily using if...then...else)

let colorFamily (f:family):color =
if (f=Spade || f = Club) then Black
else (* necessarily f = Heart || f = Diamond *)
White

Example (colorFamily using pattern-matching)

let colorFamily (f:family):color =
match f with

| Spade→ Black
| Club→ Black
| Heart→ White
| Diamond→ White

9 / 32

(Pattern) Matching on an example
The card game

Example (colorFamily using if...then...else)

let colorFamily (f:family):color =
if (f=Spade || f = Club) then Black
else (* necessarily f = Heart || f = Diamond *)
White

Example (colorFamily using pattern-matching)

let colorFamily (f:family):color =
match f with

| Spade→ Black
| Club→ Black
| Heart→ White
| Diamond→ White

9 / 32

(Pattern) Matching on an example
The card game with more concise pattern-matching

Example (colorFamily using a more concise pattern-matching)

let colorFamily (f:family):color =
match f with
Spade | Club→ Black
| Heart | Diamond→ White

Example (colorFamily using an even more concise
pattern-matching)

let colorFamily (f:family):color =
match f with
Spade | Club→ Black
| _→ White

Example (colorFamily using an even even more concise
pattern-matching)

let colorFamily = function | Spade | Club→ Black
| _→ White

10 / 32

(Pattern) Matching on an example
The card game with more concise pattern-matching

Example (colorFamily using a more concise pattern-matching)

let colorFamily (f:family):color =
match f with
Spade | Club→ Black
| Heart | Diamond→ White

Example (colorFamily using an even more concise
pattern-matching)

let colorFamily (f:family):color =
match f with
Spade | Club→ Black
| _→ White

Example (colorFamily using an even even more concise
pattern-matching)

let colorFamily = function | Spade | Club→ Black
| _→ White

10 / 32

(Pattern) Matching on an example
The card game with more concise pattern-matching

Example (colorFamily using a more concise pattern-matching)

let colorFamily (f:family):color =
match f with
Spade | Club→ Black
| Heart | Diamond→ White

Example (colorFamily using an even more concise
pattern-matching)

let colorFamily (f:family):color =
match f with
Spade | Club→ Black
| _→ White

Example (colorFamily using an even even more concise
pattern-matching)

let colorFamily = function | Spade | Club→ Black
| _→ White

10 / 32

Pattern-matching for enumerated types

To the enumerated type

type newtype = Value_1 | Value_2 | ... | Value_n

is associated the pattern matching

match expression with (* expression is of type newtype *)
| Value_1→ expression_1
| Value_2→ expression_2
...

| Value_n→ expression_n

Rules
I Pattern-matching “follows” the definition of the type (not necessarily with

the same order)
I expression_i for i ∈ {1, . . . , n} should be of the same type
I Should be exhaustive (or use the wild-card symbol _)

match expression with
| Value_1→ expression_1
...
| _→ expression

11 / 32

Pattern-matching for enumerated types

To the enumerated type

type newtype = Value_1 | Value_2 | ... | Value_n

is associated the pattern matching

match expression with (* expression is of type newtype *)
| Value_1→ expression_1
| Value_2→ expression_2
...

| Value_n→ expression_n

Rules
I Pattern-matching “follows” the definition of the type (not necessarily with

the same order)
I expression_i for i ∈ {1, . . . , n} should be of the same type
I Should be exhaustive (or use the wild-card symbol _)

match expression with
| Value_1→ expression_1
...
| _→ expression

11 / 32

Let’s practice enumerated types

Exercise

I Define the enumerated type month which represents the twelve months
of the year

I Define the function nb_of_days: month→ int which associates to
each month its number of days

12 / 32

Matching (also) works (more or less) with (some) predefined types

Pattern-matching is a generalization of the if...then...else...
↪→ works with existing/predefined types: int, bool, float, char, string

Example (Is an integer an even number?)
let is_even (n : int) : bool =
match n with
| 0→ true
| 1→ false
| 2→ true
| n→ if n mod 2 = 0 then true else false

Example (Is a character in upper case?)
let is_uppercase (c:char) = match c with

’A’→ true
| ’B’→ true
| ...(* 23 conditions *)
| ’Z’→ true
| c→ false

Example (Matching with floats is dangerous)
match 4.3 −. 1.2 with

3.1→ true
_ → false returns false

13 / 32

Matching (also) works (more or less) with (some) predefined types

Pattern-matching is a generalization of the if...then...else...
↪→ works with existing/predefined types: int, bool, float, char, string

Example (Is an integer an even number?)
let is_even (n : int) : bool =
match n with

| 0→ true
| 1→ false
| 2→ true
| n→ if n mod 2 = 0 then true else false

Example (Is a character in upper case?)
let is_uppercase (c:char) = match c with

’A’→ true
| ’B’→ true
| ...(* 23 conditions *)
| ’Z’→ true
| c→ false

Example (Matching with floats is dangerous)
match 4.3 −. 1.2 with

3.1→ true
_ → false returns false

13 / 32

Matching (also) works (more or less) with (some) predefined types

Pattern-matching is a generalization of the if...then...else...
↪→ works with existing/predefined types: int, bool, float, char, string

Example (Is an integer an even number?)
let is_even (n : int) : bool =
match n with

| 0→ true
| 1→ false
| 2→ true
| n→ if n mod 2 = 0 then true else false

Example (Is a character in upper case?)
let is_uppercase (c:char) = match c with

’A’→ true
| ’B’→ true
| ...(* 23 conditions *)
| ’Z’→ true
| c→ false

Example (Matching with floats is dangerous)
match 4.3 −. 1.2 with

3.1→ true
_ → false returns false

13 / 32

Matching (also) works (more or less) with (some) predefined types

Pattern-matching is a generalization of the if...then...else...
↪→ works with existing/predefined types: int, bool, float, char, string

Example (Is an integer an even number?)
let is_even (n : int) : bool =
match n with

| 0→ true
| 1→ false
| 2→ true
| n→ if n mod 2 = 0 then true else false

Example (Is a character in upper case?)
let is_uppercase (c:char) = match c with

’A’→ true
| ’B’→ true
| ...(* 23 conditions *)
| ’Z’→ true
| c→ false

Example (Matching with floats is dangerous)
match 4.3 −. 1.2 with

3.1→ true
_ → false returns false

13 / 32

Some shortcuts with pattern-matching
For enumerated types

“Disjuncting equivalent patterns”:

match something with
...
| p1→ v
| p2→ v
...
| pm→ v
....

can be shortened into

match something with
...
| p1 | p2 | pm→ v
....

Example (“Disjuncting equivalent patterns”)

let is_uppercase (c:char) = match c with
’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’
| ’N’ | ’O’ | ’P’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’→ true
| c→ false

14 / 32

Some shortcuts with pattern-matching - ctd
For characters

“Leveraging the order between characters”:

match something with
...
| p1→ v
| p2→ v
...
| pm→ v
....

match something with
...
| p1 .. pm→ v
....

or

match something with
...
| pm .. p1→ v
....

where p1, .., pm are consecutive characters and p1 and pm are the minimal
and the maximal characters (not necessarily in this order)

Example (“Leveraging the order between the elements of characters”)

let is_uppercase (c:char)
= match c with

’A’ .. ’Z’→ true
| c→ false

or

let is_uppercase (c:char)
= match c with

’Z’ .. ’A’→ true
| c→ false

15 / 32

Some shortcuts with pattern-matching - ctd
For characters

“Leveraging the order between characters”:

match something with
...
| p1→ v
| p2→ v
...
| pm→ v
....

match something with
...
| p1 .. pm→ v
....

or

match something with
...
| pm .. p1→ v
....

where p1, .., pm are consecutive characters and p1 and pm are the minimal
and the maximal characters (not necessarily in this order)

Example (“Leveraging the order between the elements of characters”)

let is_uppercase (c:char)
= match c with

’A’ .. ’Z’→ true
| c→ false

or

let is_uppercase (c:char)
= match c with

’Z’ .. ’A’→ true
| c→ false

15 / 32

Outline

Synonym types

Enumerated types

Product types

Union/Sum types

Case study: Modelling 4 card games

Product type: motivating example(s) and connection with maths

Example (Some complex numbers)
How can we model complex numbers?
In maths, we define:

C = {a + ib | a ∈ R, b ∈ R}

z a b
3.0 + i ∗ 2.5 3.0 2.5

12.0 + i ∗ 1.5 12.0 1.5
(1.0 + i) ∗ (1.0− i)

Actually, we could also define:

C = R× R

The operation × is the Cartesian product of sets

Example (Defining card)
Same reasoning can be followed if we want to define the type of a card. . .

16 / 32

Product type: motivating example(s) and connection with maths

Example (Some complex numbers)
How can we model complex numbers?
In maths, we define:

C = {a + ib | a ∈ R, b ∈ R}

z a b
3.0 + i ∗ 2.5 3.0 2.5

12.0 + i ∗ 1.5 12.0 1.5
(1.0 + i) ∗ (1.0− i)

Actually, we could also define:

C = R× R

The operation × is the Cartesian product of sets

Example (Defining card)
Same reasoning can be followed if we want to define the type of a card. . .

16 / 32

Product type: motivating example(s) and connection with maths

Example (Some complex numbers)
How can we model complex numbers?
In maths, we define:

C = {a + ib | a ∈ R, b ∈ R}

z a b
3.0 + i ∗ 2.5 3.0 2.5

12.0 + i ∗ 1.5 12.0 1.5
(1.0 + i) ∗ (1.0− i)

Actually, we could also define:

C = R× R

The operation × is the Cartesian product of sets

Example (Defining card)
Same reasoning can be followed if we want to define the type of a card. . .

16 / 32

(Cartesian) Product (of) type

We can build Cartesian product of types, i.e., pairs of object of different types:

Type Constructor Value Constructors
α∗β •,•

int∗int 1,2
int∗float 1,2.0

DEMO: A couple of pairs

Defining new product types:

type new_type = existing_type1 ∗ existing_type2

Two basic operations on pairs:
I fst(•1,•2) = •1

I snd(•1,•2) = •2

Deconstruction on pairs (hidden pattern matching):

let (x1,x2) = (v1,v2) in expression_using_x1_and_x2

↪→ defines the identifiers x1 and x2 locally

DEMO: Product types

17 / 32

(Cartesian) Product (of) type

We can build Cartesian product of types, i.e., pairs of object of different types:

Type Constructor Value Constructors
α∗β •,•

int∗int 1,2
int∗float 1,2.0

DEMO: A couple of pairs

Defining new product types:

type new_type = existing_type1 ∗ existing_type2

Two basic operations on pairs:
I fst(•1,•2) = •1

I snd(•1,•2) = •2

Deconstruction on pairs (hidden pattern matching):

let (x1,x2) = (v1,v2) in expression_using_x1_and_x2

↪→ defines the identifiers x1 and x2 locally

DEMO: Product types

17 / 32

(Cartesian) Product (of) type

We can build Cartesian product of types, i.e., pairs of object of different types:

Type Constructor Value Constructors
α∗β •,•

int∗int 1,2
int∗float 1,2.0

DEMO: A couple of pairs

Defining new product types:

type new_type = existing_type1 ∗ existing_type2

Two basic operations on pairs:
I fst(•1,•2) = •1

I snd(•1,•2) = •2

Deconstruction on pairs (hidden pattern matching):

let (x1,x2) = (v1,v2) in expression_using_x1_and_x2

↪→ defines the identifiers x1 and x2 locally

DEMO: Product types

17 / 32

General Cartesian product of types
Same principle

Can be generalized to n-tuples:
I type definition/constrcution:
let my_type = type1 ∗ type2 ∗ ... ∗ typen

I value construction: v1,v2,...,vn
I value deconstruction:

let (x1,...,xn) = (v1,...,vn) in expression
(* expression is depending on x1,...,xn *)

DEMO: Generalized Product types

18 / 32

Let’s practice product type

Exercise: Getting familiar with tuples

I Define the type pair_of_int which implements pairs of integers
I Define the function swap which swaps the integers in a pair_of_int

I Implement a function my_fst which behaves as the predefined function
fst on pairs_of_int

Exercise on Complex numbers

I Define the type complex which corresponds to complex numbers
I Define function real_part of type complex→ float which returns

the real part of a complex number
I Define function im_part of type complex→ float which returns the

imaginary part of a complex number
I Define function conjugation: complex→ complex

Remainder: the conjugation of a + b.i is a− b.i

19 / 32

Let’s practice more
Geometry and vectors

Exercise on vectors

I Define the type vect which corresponds to vectors in the plane
I Define the function sum : vect→ vect→ vect which performs the

sum of two vectors
I What is the type of the function which implements the scalar product?
I Implement a function which performs the scalar product of two vectors

Remainder: scalar product of two vectors −→u , −→v : ||−→u ||.||−→v ||. cos(−→u ,−→v)
with cos(−→u ,−→v) =

ux .vx+uy .vy

||−→u ||.||−→v ||

I A vector can represent the position of a point in the plane. The rotation
of angle θ of a point of coordinates (x , y) around the origin is expressed
by the formula: (

cos θ − sin θ
sin θ cos θ

)
·
(

x
y

)
Implement the function rotation: float→ vect→ vect such that
rotation angle v makes the vector designated by v rotating of an
angle angle

20 / 32

Let’s practice more
Geometry and vectors

Exercise on vectors

I Define the type vect which corresponds to vectors in the plane
I Define the function sum : vect→ vect→ vect which performs the

sum of two vectors
I What is the type of the function which implements the scalar product?
I Implement a function which performs the scalar product of two vectors

Remainder: scalar product of two vectors −→u , −→v : ||−→u ||.||−→v ||. cos(−→u ,−→v)
with cos(−→u ,−→v) =

ux .vx+uy .vy

||−→u ||.||−→v ||

I A vector can represent the position of a point in the plane. The rotation
of angle θ of a point of coordinates (x , y) around the origin is expressed
by the formula: (

cos θ − sin θ
sin θ cos θ

)
·
(

x
y

)
Implement the function rotation: float→ vect→ vect such that
rotation angle v makes the vector designated by v rotating of an
angle angle

20 / 32

Outline

Synonym types

Enumerated types

Product types

Union/Sum types

Case study: Modelling 4 card games

Motivating union types

Mixing carrots and cabbage

. . . in the context of OCaml type system

Some concepts that we cannot model yet:
I How to build a type figure which can represent circles, triangles,

quadrilaterals?
I How to build a type which allows to represent a full color palette ?

I How to build a card game which can represent various games?

21 / 32

Motivating union types

Mixing carrots and cabbage

. . . in the context of OCaml type system

Some concepts that we cannot model yet:
I How to build a type figure which can represent circles, triangles,

quadrilaterals?

I How to build a type which allows to represent a full color palette ?

I How to build a card game which can represent various games?

21 / 32

Motivating union types

Mixing carrots and cabbage

. . . in the context of OCaml type system

Some concepts that we cannot model yet:
I How to build a type figure which can represent circles, triangles,

quadrilaterals?
I How to build a type which allows to represent a full color palette ?

I How to build a card game which can represent various games?

21 / 32

Motivating union types

Mixing carrots and cabbage

. . . in the context of OCaml type system

Some concepts that we cannot model yet:
I How to build a type figure which can represent circles, triangles,

quadrilaterals?
I How to build a type which allows to represent a full color palette ?

I How to build a card game which can represent various games?

21 / 32

Back to the paint
Introducing Union types through an example

Type definition Filtering

type paint =
Blue
| Yellow
| Red

let is_blue (p : paint) : bool =
match p with

| Blue→ true
| Yellow→ false
| Red→ false

Remark The type paint contains three constant constructors �

How can we add to the set of paints, some new paints that do not have a
name, but only reference number?

22 / 32

Back to the paint
Introducing Union types through an example

Type definition Filtering

type paint =
| Blue
| Yellow
| Red
| Number of int

let is_blue (p : paint) : bool =
match p with

| Blue→ true
| Yellow→ false
| Red→ false
| Number i→ false

Remark
I Type paint has 3 constant constructors and one non constant

constructor.
I Number 14 represents the paint numbered 14 (in an imaginary

catalogue)

�

23 / 32

Back to the paint
Introducing Union types through an example

Type definition Filtering
type paint =

| Blue
| Yellow
| Red

(* palette RGB *)
| RGB of int ∗ int ∗ int

let is_blue (p : paint) : bool =
match p with

| Blue→ true
| Yellow→ false
| Red→ false
| RGB (r,g,b)→ r = 0 && g = 0 && b = 255

I Type paint has three constant constructors and two non-constant
constructors

I RGB(255,0,0) corresponds to red
I RGB(255,255,0) corresponds to yellow
I . . .

24 / 32

Union types (aka union type, tagged union, algebraic data types)
The general form

Syntax of union types:
type new_type =

| Identifier_1 of type_1
| Identifier_2 of type_2
...
| Identifier_n of type_n

Note that:
I Identifier_i, i ∈ [1, n], is an explicit name called a constructor
I the definition “of type_i” is optional
I type_i, i ∈ [1, n], can be any (existing) type
I Constructor name must be capitalized

Expression Declaration (of some type t):

let expression = Identifier v

(if Identifier of tt is a constructor of type t and v is a value of type tt)
Remark

I Union types are a generalization of enumerated types

�

25 / 32

Union types (aka union type, tagged union, algebraic data types)
The general form

Syntax of union types:
type new_type =

| Identifier_1 of type_1
| Identifier_2 of type_2
...
| Identifier_n of type_n

Note that:
I Identifier_i, i ∈ [1, n], is an explicit name called a constructor
I the definition “of type_i” is optional
I type_i, i ∈ [1, n], can be any (existing) type
I Constructor name must be capitalized

Expression Declaration (of some type t):

let expression = Identifier v

(if Identifier of tt is a constructor of type t and v is a value of type tt)
Remark

I Union types are a generalization of enumerated types

�

25 / 32

Union types (aka union type, tagged union, algebraic data types)
The general form

Syntax of union types:
type new_type =

| Identifier_1 of type_1
| Identifier_2 of type_2
...
| Identifier_n of type_n

Note that:
I Identifier_i, i ∈ [1, n], is an explicit name called a constructor
I the definition “of type_i” is optional
I type_i, i ∈ [1, n], can be any (existing) type
I Constructor name must be capitalized

Expression Declaration (of some type t):

let expression = Identifier v

(if Identifier of tt is a constructor of type t and v is a value of type tt)
Remark

I Union types are a generalization of enumerated types

�
25 / 32

An example: Generalization of int and float

Having two different sets of operations for int and float is sometimes
annoying

Let’s define Numbers = R ∪ N

type numbers = INTEGER of int | REAL of float

(INTEGER, REAL sont des contructeurs de type)

Let’s define additions on two numbers:

let add ((nb1,nb2): number∗number) : number= match (nb1,nb2) with
| (INTEGER(n1), INTEGER(n2))→ INTEGER(n1 + n2)
| (INTEGER(n) , REAL(r)) → REAL((float_of_int n) +. r)
| (REAL(r) , INTEGER(n)) → REAL((float_of_int n) +. r)
| (REAL(r1) , REAL(r2)) → REAL(r1 +. r2)

Remark Has some advantages and disadvantages �

26 / 32

Another example: Geometry

Type definition Filtering
type pt = float ∗ float

type figure =
| Rectangle of pt ∗ pt
| Circle of pt ∗ float
| Triangle of pt ∗ pt ∗ pt

let perimeter (f : figure) : float =
match f with

| Rectangle (p1 , 2)→ ...
| Circle (_ , r)→ ...
| Triangle (p1 ,p2 , p3)→ ...

let p1 = 1.0, 2.0 and p2 = 3.9, 2.7 in Rectangle (p1,p2)
let p1 = (1.3, 2.9) in Circle (p1,3.6)

Exercise

I Define the function distance: pt→ pt→ float

I The area of any triangle of edges a, b, c is computed using the Héron
formula:

A =
√

s · (s − a) · (s − b) · (s − c) with s =
1
2
· (a + b + c)

Define the function area: figure→ float

27 / 32

Remark: distinguish constructors and unary functions

Constructors and unary functions takes a value of some type and return
another value of some other type

A function:
I performs a computation
I cannot be used in pattern matching: the value of all functions is <fun>

A type constructor:
I constructs a value
I can be used in a pattern-matching

DEMO: constructors vs unary functions

28 / 32

Remark: Difference between union and sum

There is actually a slight difference between union and sum

Consider two sets E and F :

Union Sum
E ∪ F {FromE(x) | x ∈ E} ∪ {FromF(x) | x ∈ F}

“everything is merged/mixed” “elements are decorated” and then merged

Second solution is less ambiguous and then preferred by computers

29 / 32

Card Game
Your choice

1000 bornes Uno

Playing cards:

Images from Wikipedia, Licence CC

30 / 32

Conclusion

Summary:

I Richer types:

Type Why?
synonym types informative type names
enumerated types Finite set of constants
product types Cartesian product
sum types Set Union

I Using filtering and pattern matching to define more complex functions
(for each of these types)

Exercise
Find a (personal) example of objects that can be naturally modelled as a
union type. Propose/Invent a function using this type.

31 / 32

	Synonym types
	Enumerated types
	Product types
	Union/Sum types
	Case study: Modelling 4 card games

