
INF121:
Functional Algorithmic and Programming

Lecture 4: Recursion

Academic Year 2011 - 2012

In the previous episodes of INF 121

I Basic Types:
Type Operations Constants

Booleans not, &&, || true, false
Integers +,-,*,/,mod,,-1, 0, 1, ...

floats +.,-.,*.,/. 0.4, 12.3, 16. , 64.
char lowercase, code, ... ’a’, ’u’, ’A’, ...

I if ... then ... else ... conditional structure
I identifiers (local and global)
I defining and using functions
I Advanced types: synonym, enumerated, product, sum
I Pattern matching on simple and advanced expressions

1 / 24

About recursion

What is recursion/a recursive definition?

Example (Some recursive objects)

La vache qui rit is a trademark

un, un+1. . .
Fibonacci

Images under Creative Common License

Recursive functions generalize recursive series

Largely used in Computer Science
↪→ a computer is a zoo of interacting recursive functions

2 / 24

About recursion

What is recursion/a recursive definition?

Example (Some recursive objects)

La vache qui rit is a trademark

un, un+1. . .
Fibonacci

Images under Creative Common License

Recursive functions generalize recursive series

Largely used in Computer Science
↪→ a computer is a zoo of interacting recursive functions

2 / 24

About recursion

What is recursion/a recursive definition?

Example (Some recursive objects)

La vache qui rit is a trademark

un, un+1. . .
Fibonacci

Images under Creative Common License

Recursive functions generalize recursive series

Largely used in Computer Science
↪→ a computer is a zoo of interacting recursive functions

2 / 24

Outline

Recursive functions

Termination

Recursive types

Conclusion

Recursive functions in OCaml
An introductory example

Example (Factorial)

{
0! = 1
n! = n × (n − 1)!, n ≥ 1

3! = 3× (3− 1)! = 3× 2!
= 3× 2× (2− 1)! = 3× 2× (2− 1)!
= 3× 2× 1× (1− 1)! = 3× 2× 1× 0! = . . . = 6

I This definition is sensible, it allows to obtain a result for all integers:
well-founded
(changing the − into + in the 2nd line makes the def not well-founded)

How can we detect whether a function or a program is well-founded?

Example (Defining factorial in OCaml)

let rec fact (n:int):int =
if n=0 then 1
else n ∗ fact(n−1)

let rec fact (n:int):int =
match n with

0→ 1
| n→ n ∗ fact(n−1)

4 / 24

Recursive functions in OCaml
An introductory example

Example (Factorial)

{
0! = 1
n! = n × (n − 1)!, n ≥ 1

3! = 3× (3− 1)! = 3× 2!
= 3× 2× (2− 1)! = 3× 2× (2− 1)!
= 3× 2× 1× (1− 1)! = 3× 2× 1× 0! = . . . = 6

I This definition is sensible, it allows to obtain a result for all integers:
well-founded
(changing the − into + in the 2nd line makes the def not well-founded)

How can we detect whether a function or a program is well-founded?

Example (Defining factorial in OCaml)

let rec fact (n:int):int =
if n=0 then 1
else n ∗ fact(n−1)

let rec fact (n:int):int =
match n with

0→ 1
| n→ n ∗ fact(n−1)

4 / 24

Recursive functions in OCaml
An introductory example

Example (Factorial)

{
0! = 1
n! = n × (n − 1)!, n ≥ 1

3! = 3× (3− 1)! = 3× 2!
= 3× 2× (2− 1)! = 3× 2× (2− 1)!
= 3× 2× 1× (1− 1)! = 3× 2× 1× 0! = . . . = 6

I This definition is sensible, it allows to obtain a result for all integers:
well-founded
(changing the − into + in the 2nd line makes the def not well-founded)

How can we detect whether a function or a program is well-founded?

Example (Defining factorial in OCaml)

let rec fact (n:int):int =
if n=0 then 1
else n ∗ fact(n−1)

let rec fact (n:int):int =
match n with

0→ 1
| n→ n ∗ fact(n−1)

4 / 24

Defining a recursive function

Specification: description, signature, examples, and recursive equations

Implementation: defining a recursive function in OCaml

let rec fct_name (p1:t1) (p2:t2) ... (pn:tn):t = expr

where expr generally contains one or more occurrences of fct_name s.t.:
I Basis case: no call to the function currently defined
I Recursive calls to the currently defined function (with different

parameters)

Typing works as for non-recursive functions

Remark
I t1, .., tn can be any type (not necessarily integers) - cf. later
I A recursive function cannot be anonymous

�

5 / 24

Defining a recursive function

Specification: description, signature, examples, and recursive equations

Implementation: defining a recursive function in OCaml

let rec fct_name (p1:t1) (p2:t2) ... (pn:tn):t = expr

where expr generally contains one or more occurrences of fct_name s.t.:
I Basis case: no call to the function currently defined
I Recursive calls to the currently defined function (with different

parameters)

Typing works as for non-recursive functions

Remark
I t1, .., tn can be any type (not necessarily integers) - cf. later
I A recursive function cannot be anonymous

�

5 / 24

Defining some recursive functions

Example (Sum of integers from 0 to n)
description + profile + examples

{
u0 = 0
un = n + un−1 when 0 < n

let rec sum (n : int) : int =
match n with
| 0→ 0
| n→ n + sum (n − 1)

Example (Quotient of the Euclidian division)
description + profile + examples

a/b =

{
0 when a < b
1 + (a− b)/b when b ≤ a

let rec div (a : int) (b: int) : int =
if a < b then 0
else 1 + div (a − b) (b)

DEMO: some other recursive functions

6 / 24

Defining some recursive functions

Example (Sum of integers from 0 to n)
description + profile + examples

{
u0 = 0
un = n + un−1 when 0 < n

let rec sum (n : int) : int =
match n with
| 0→ 0
| n→ n + sum (n − 1)

Example (Quotient of the Euclidian division)
description + profile + examples

a/b =

{
0 when a < b
1 + (a− b)/b when b ≤ a

let rec div (a : int) (b: int) : int =
if a < b then 0
else 1 + div (a − b) (b)

DEMO: some other recursive functions

6 / 24

Calling a recursive function

“Unfolding the function body” – rewriting

Example (Factorial and Fibonacci’s call trees)

fact(0) = 1

fact(1)

fact(2)

fact(3) =3∗2=6

1

1 ∗ 1 = 1

2 ∗ 1 = 2

1∗

2∗

3∗ fib(4)=3∗2=6

fib(3)=2+1=3 fib(2)=1+1=1

fib(2)=1+1=2 fib(1)=1 fib(1)=1 fib(0)=1

fib(1)=1 fib(0)=1

I −→: rewriting generated calls and suspending operations
I 99K: evaluation (in the reverse order) of suspended operations

In OCaml: directive #trace DEMO: Tracing a function

7 / 24

Calling a recursive function

“Unfolding the function body” – rewriting

Example (Factorial and Fibonacci’s call trees)

fact(0) = 1

fact(1)

fact(2)

fact(3) =3∗2=6

1

1 ∗ 1 = 1

2 ∗ 1 = 2

1∗

2∗

3∗ fib(4)=3∗2=6

fib(3)=2+1=3 fib(2)=1+1=1

fib(2)=1+1=2 fib(1)=1 fib(1)=1 fib(0)=1

fib(1)=1 fib(0)=1

I −→: rewriting generated calls and suspending operations
I 99K: evaluation (in the reverse order) of suspended operations

In OCaml: directive #trace DEMO: Tracing a function

7 / 24

Let’s practice

Exercise: remainder of the Euclidean division
Define a function which computes the remainder of the Euclidean division

Exercise: The Fibonacci series
Implement a function which returns the nth Fibonacci number where n is
given as a parameter. Formally the Fibonacci series is defined as follows:

fibn =

{
1 when n = 0 or n = 1
fibn−1 + fibn−2 when n > 1

8 / 24

Let’s practice

Exercise: the power function (two ways)

{
x0 = 1
xn = x ∗ xn−1 when 0 < n


x0 = 1
xn = (x ∗ x)n/2 when n is even

xn = x ∗ (x ∗ x)
n−1

2 when n is odd

I Define function power: int→ int→ int twice following the two
equivalent mathematical definitions

I What is the difference between those two versions?

let rec pow (x:float) (n:int):int =
if (n=0) then 1
else x ∗ (pow x n−1)

let rec pow (x:float) (n:int):int =
if (n=0) then 1
else (
if (n mod 2=0) then (pow (x∗x) (n/2)
else pow (x∗x) ((n−1)/2)

)

9 / 24

Let’s practice

Exercise: the power function (two ways)

{
x0 = 1
xn = x ∗ xn−1 when 0 < n


x0 = 1
xn = (x ∗ x)n/2 when n is even

xn = x ∗ (x ∗ x)
n−1

2 when n is odd

I Define function power: int→ int→ int twice following the two
equivalent mathematical definitions

I What is the difference between those two versions?

let rec pow (x:float) (n:int):int =
if (n=0) then 1
else x ∗ (pow x n−1)

let rec pow (x:float) (n:int):int =
if (n=0) then 1
else (
if (n mod 2=0) then (pow (x∗x) (n/2)
else pow (x∗x) ((n−1)/2)

)

9 / 24

The Hanoi towers
A word about Divide and Conquer

Images under Creative Common License 10 / 24

Mutually recursive functions
On an example

So far “direct” recursion: a function fct contains calls to itself
What about a function f which calls g which calls f
↪→ mutually recursive functions

Example (Is a number odd or even)
How to determine whether an integer is odd or even without using
/, ∗, mod,and, more specifically using − and =?

I n ∈ N is odd if n − 1 is even
I n ∈ N is even if n − 1 is odd
I 0 is even
I 0 is not odd

let rec even (n:int):bool = if n=0 then true else odd (n−1)
and odd (m:int):bool = if m=0 then false else even (m−1)

DEMO: even and odd, mutually recursive

11 / 24

Mutually recursive functions
On an example

So far “direct” recursion: a function fct contains calls to itself
What about a function f which calls g which calls f
↪→ mutually recursive functions

Example (Is a number odd or even)
How to determine whether an integer is odd or even without using
/, ∗, mod,and, more specifically using − and =?

I n ∈ N is odd if n − 1 is even
I n ∈ N is even if n − 1 is odd
I 0 is even
I 0 is not odd

let rec even (n:int):bool = if n=0 then true else odd (n−1)
and odd (m:int):bool = if m=0 then false else even (m−1)

DEMO: even and odd, mutually recursive

11 / 24

Mutually recursive functions
On an example

So far “direct” recursion: a function fct contains calls to itself
What about a function f which calls g which calls f
↪→ mutually recursive functions

Example (Is a number odd or even)
How to determine whether an integer is odd or even without using
/, ∗, mod,and, more specifically using − and =?

I n ∈ N is odd if n − 1 is even
I n ∈ N is even if n − 1 is odd
I 0 is even
I 0 is not odd

let rec even (n:int):bool = if n=0 then true else odd (n−1)
and odd (m:int):bool = if m=0 then false else even (m−1)

DEMO: even and odd, mutually recursive

11 / 24

Mutually recursive functions
On an example

So far “direct” recursion: a function fct contains calls to itself
What about a function f which calls g which calls f
↪→ mutually recursive functions

Example (Is a number odd or even)
How to determine whether an integer is odd or even without using
/, ∗, mod,and, more specifically using − and =?

I n ∈ N is odd if n − 1 is even
I n ∈ N is even if n − 1 is odd
I 0 is even
I 0 is not odd

let rec even (n:int):bool = if n=0 then true else odd (n−1)
and odd (m:int):bool = if m=0 then false else even (m−1)

DEMO: even and odd, mutually recursive

11 / 24

Mutually recursive functions
Generalization

Mutually recursive functions

let rec fct1 [parameters+return type] = expr_1
and fct2 [parameters+return type] = expr_2

....
and fctn [parameters+return type] = expr_n

expr_1, expr_2, ..., expr_n may have calls to fct1, fct2, ..., fctn

12 / 24

Outline

Recursive functions

Termination

Recursive types

Conclusion

Termination

Do you think this function terminates (the McCarthy function)?

mac(n) =

{
n − 10 when n > 100
mac(mac(n + 11)) when n ≤ 100

What about these ones?

The power function{
x0 = 1
xn = x ∗ xn−1 when 0 < n

The factorial function
fact(0) 1
fact(1) = 1
fact(n) = fact(n+1)

n+1

We are only interested in terminating functions. . .

Can we have an intuitive characterization of termination w.r.t. the calling tree?

13 / 24

Termination

Do you think this function terminates (the McCarthy function)?

mac(n) =

{
n − 10 when n > 100
mac(mac(n + 11)) when n ≤ 100

What about these ones?

The power function{
x0 = 1
xn = x ∗ xn−1 when 0 < n

The factorial function
fact(0) 1
fact(1) = 1
fact(n) = fact(n+1)

n+1

We are only interested in terminating functions. . .

Can we have an intuitive characterization of termination w.r.t. the calling tree?

13 / 24

Termination

Do you think this function terminates (the McCarthy function)?

mac(n) =

{
n − 10 when n > 100
mac(mac(n + 11)) when n ≤ 100

What about these ones?

The power function{
x0 = 1
xn = x ∗ xn−1 when 0 < n

The factorial function
fact(0) 1
fact(1) = 1
fact(n) = fact(n+1)

n+1

We are only interested in terminating functions. . .

Can we have an intuitive characterization of termination w.r.t. the calling tree?

13 / 24

How can we prove that a recursive function terminate?
Using a Measurement

Theorem
Every series of positive numbers which is strictly decreasing is converging

General methodology to show a function is terminating
From the def. of the function and its parameters, derive a measurement s.t.:

I it is positive
I the measurement strictly decreases between two recursive calls

each recursive call “brings us closer to the base case”

Example (Termination of the function sum)

let rec sum (n : int) : int =
match n with
| 0→ 0
| n→ n + sum (n − 1)

Measurement:
I Let’s defineM(n) = n
I M(n) ∈ N (according to the spec)
I M(n) >M(n − 1) since n > n − 1

14 / 24

How can we prove that a recursive function terminate?
Using a Measurement

Theorem
Every series of positive numbers which is strictly decreasing is converging

General methodology to show a function is terminating
From the def. of the function and its parameters, derive a measurement s.t.:

I it is positive
I the measurement strictly decreases between two recursive calls

each recursive call “brings us closer to the base case”

Example (Termination of the function sum)

let rec sum (n : int) : int =
match n with
| 0→ 0
| n→ n + sum (n − 1)

Measurement:
I Let’s defineM(n) = n
I M(n) ∈ N (according to the spec)
I M(n) >M(n − 1) since n > n − 1

14 / 24

How can we prove that a recursive function terminate?
Using a Measurement

Theorem
Every series of positive numbers which is strictly decreasing is converging

General methodology to show a function is terminating
From the def. of the function and its parameters, derive a measurement s.t.:

I it is positive
I the measurement strictly decreases between two recursive calls

each recursive call “brings us closer to the base case”

Example (Termination of the function sum)

let rec sum (n : int) : int =
match n with
| 0→ 0
| n→ n + sum (n − 1)

Measurement:
I Let’s defineM(n) = n
I M(n) ∈ N (according to the spec)
I M(n) >M(n − 1) since n > n − 1

14 / 24

Termination of some functions

Exercise: finding measurements

Revisit the functions factorial, power, quotient, remainder and find
the measurement proving that your function terminates

15 / 24

Termination of some functions
factorial and power

Termination of fact:

let rec fact (n:int):int =
match n with

0→ 1
| n→ n ∗ fact(n−1)

I Let’s defineM(fact n) = n
I M(fact n) ∈ N (according to the

spec)
I M(fact n) >M(fact (n − 1))

since n > n − 1
Termination of power:

let rec power (a:float) (n:int):float =
if (n=0) then 1.
else (if n>0 then a ∗. power a (n−1)
else 1. /. (power a (n−1))

)

I Let’s defineM(power a n) = n
I M(power a n) ∈ N (according to the spec)
I M(power a n) >M(power a (n − 1))

16 / 24

Termination of some functions
factorial and power

Termination of fact:

let rec fact (n:int):int =
match n with

0→ 1
| n→ n ∗ fact(n−1)

I Let’s defineM(fact n) = n
I M(fact n) ∈ N (according to the

spec)
I M(fact n) >M(fact (n − 1))

since n > n − 1

Termination of power:

let rec power (a:float) (n:int):float =
if (n=0) then 1.
else (if n>0 then a ∗. power a (n−1)
else 1. /. (power a (n−1))

)

I Let’s defineM(power a n) = n
I M(power a n) ∈ N (according to the spec)
I M(power a n) >M(power a (n − 1))

16 / 24

Termination of some functions
factorial and power

Termination of fact:

let rec fact (n:int):int =
match n with

0→ 1
| n→ n ∗ fact(n−1)

I Let’s defineM(fact n) = n
I M(fact n) ∈ N (according to the

spec)
I M(fact n) >M(fact (n − 1))

since n > n − 1
Termination of power:

let rec power (a:float) (n:int):float =
if (n=0) then 1.
else (if n>0 then a ∗. power a (n−1)
else 1. /. (power a (n−1))

)

I Let’s defineM(power a n) = n
I M(power a n) ∈ N (according to the spec)
I M(power a n) >M(power a (n − 1))

16 / 24

Termination of some functions
factorial and power

Termination of fact:

let rec fact (n:int):int =
match n with

0→ 1
| n→ n ∗ fact(n−1)

I Let’s defineM(fact n) = n
I M(fact n) ∈ N (according to the

spec)
I M(fact n) >M(fact (n − 1))

since n > n − 1
Termination of power:

let rec power (a:float) (n:int):float =
if (n=0) then 1.
else (if n>0 then a ∗. power a (n−1)
else 1. /. (power a (n−1))

)

I Let’s defineM(power a n) = n
I M(power a n) ∈ N (according to the spec)
I M(power a n) >M(power a (n − 1))

16 / 24

Termination of some functions

let rec quotient (a:int) (b:int):int =
if (a<b) then 0
else 1 + quotient (a−b) b

let rec remainder (a:int) (b:int):int =
if (a<b) then a
else remainder (a−b) b

Termination of quotient and remainder:

I Let’s defineM(X a b) = a
I M(X a b) ∈ N (according to the spec)
I M(X a b) >M(X (a− b) b) since b > 0

where X ∈ {quotient, remainder}

17 / 24

Termination of some functions

let rec quotient (a:int) (b:int):int =
if (a<b) then 0
else 1 + quotient (a−b) b

let rec remainder (a:int) (b:int):int =
if (a<b) then a
else remainder (a−b) b

Termination of quotient and remainder:

I Let’s defineM(X a b) = a
I M(X a b) ∈ N (according to the spec)
I M(X a b) >M(X (a− b) b) since b > 0

where X ∈ {quotient, remainder}

17 / 24

Outline

Recursive functions

Termination

Recursive types

Conclusion

Recursive types

Recursive functions are functions that appear in their own definition

Recursive types are types that appear in their own definition

General syntax: type new_type = ... new_type...

Recursive types should be well-founded

They make sense only for Union type with a non recursive constructor
(constant or not)

DEMO: (not) Well-founded types

DEMO: Metaphor of building a wall

Definition of a recursive function on a recursive type should follow the
recursive type

18 / 24

Recursive types

Recursive functions are functions that appear in their own definition

Recursive types are types that appear in their own definition

General syntax: type new_type = ... new_type...

Recursive types should be well-founded

They make sense only for Union type with a non recursive constructor
(constant or not)

DEMO: (not) Well-founded types

DEMO: Metaphor of building a wall

Definition of a recursive function on a recursive type should follow the
recursive type

18 / 24

Recursive types

Recursive functions are functions that appear in their own definition

Recursive types are types that appear in their own definition

General syntax: type new_type = ... new_type...

Recursive types should be well-founded

They make sense only for Union type with a non recursive constructor
(constant or not)

DEMO: (not) Well-founded types

DEMO: Metaphor of building a wall

Definition of a recursive function on a recursive type should follow the
recursive type

18 / 24

Recursive types

Recursive functions are functions that appear in their own definition

Recursive types are types that appear in their own definition

General syntax: type new_type = ... new_type...

Recursive types should be well-founded

They make sense only for Union type with a non recursive constructor
(constant or not)

DEMO: (not) Well-founded types

DEMO: Metaphor of building a wall

Definition of a recursive function on a recursive type should follow the
recursive type

18 / 24

A recursive type: Peano natural numbers
The mathematical and OCaml perspectives

Peano natural numbers NatPeano: an alternative definition of N

Recursive definition of NatPeano:
I a basis natural Zero
I a constructor: Suc: returns the successor of a NatPeano number
I Zero is the successor of no NatPeano number
I two NatPeano numbers having the same successor are equal

↪→ N can be defined as the set containing Zero and the successor of any
element it contains

Zero Suc(Zero) Suc(Suc(Zero)) . . .Suc Suc Suc

Defining NatPeano in OCaml:

type natPeano = Zero | Suc of natPeano

↪→ natPeano is a recursive sum type

19 / 24

A recursive type: Peano natural numbers
The mathematical and OCaml perspectives

Peano natural numbers NatPeano: an alternative definition of N

Recursive definition of NatPeano:
I a basis natural Zero
I a constructor: Suc: returns the successor of a NatPeano number
I Zero is the successor of no NatPeano number
I two NatPeano numbers having the same successor are equal

↪→ N can be defined as the set containing Zero and the successor of any
element it contains

Zero Suc(Zero) Suc(Suc(Zero)) . . .Suc Suc Suc

Defining NatPeano in OCaml:

type natPeano = Zero | Suc of natPeano

↪→ natPeano is a recursive sum type

19 / 24

Peano natural numbers
Conversion to and from integers

Example (Converting a Peano natural number into an integer)

I Description: natPeano2int translates a Peano number into its usual
counterpart in the set of integers

I Profile/Signature: natPeano2int: natPeano→ int

I Ex.: natPeano2int Zero = 0,
natPeano2int Suc(Suc(Suc Zero))=3

let rec natPeano2int (n:natPeano):int =
match n with

Zero→ 0
| Suc (nprime)→ 1+ natPeano2int nprime

Example (Converting an integer into a Peano number)
Same as above but in the converse sense:

let rec int2natPeano (n:int):natPeano=
match n with
0→ Zero
| nprime→ Suc (int2natPeano (n−1))

DEMO: Functions natPeano2int and int2natPeano

20 / 24

Peano natural numbers
Conversion to and from integers

Example (Converting a Peano natural number into an integer)

I Description: natPeano2int translates a Peano number into its usual
counterpart in the set of integers

I Profile/Signature: natPeano2int: natPeano→ int

I Ex.: natPeano2int Zero = 0,
natPeano2int Suc(Suc(Suc Zero))=3

let rec natPeano2int (n:natPeano):int =
match n with

Zero→ 0
| Suc (nprime)→ 1+ natPeano2int nprime

Example (Converting an integer into a Peano number)
Same as above but in the converse sense:

let rec int2natPeano (n:int):natPeano=
match n with

0→ Zero
| nprime→ Suc (int2natPeano (n−1))

DEMO: Functions natPeano2int and int2natPeano
20 / 24

Peano natural numbers
Some functions: sum, product

Exercise: sum of two Peano numbers

I Define the function that sums two Peano numbers without using the
conversion from/to int

I Prove that your function terminates

Exercise: product of two Peano numbers

I Define the function that multiplies two Peano numbers
I Prove that your function terminates

Exercise: factorial of a Peano number

I Define the function that computes the factorial of a Peano number
I Prove that your function terminates

21 / 24

A recursive type: polynomials of 1 variable

A polynomial of one variable (a sum of monomials):

αnX n + αn−1X n−1 + . . .+ α1X 1 + α0

Let’s see it as a recursive object: a polynomial is either a monomial or the
sum of monomial and another polynomial

Model 1:

type coef = int
type degree = int
type monomial = coef ∗ degree
type polynomial = Mn of monomial

| Plus of monomial ∗ polynomial

DEMO: Model 1 of Polynomials + its disadvantages

22 / 24

A recursive type: polynomials of 1 variable

A polynomial of one variable (a sum of monomials):

αnX n + αn−1X n−1 + . . .+ α1X 1 + α0

Let’s see it as a recursive object: a polynomial is either a monomial or the
sum of monomial and another polynomial

Model 1:

type coef = int
type degree = int
type monomial = coef ∗ degree
type polynomial = Mn of monomial

| Plus of monomial ∗ polynomial

DEMO: Model 1 of Polynomials + its disadvantages

22 / 24

A recursive type: polynomials of 1 variable - ctd

Model 2:

I with canonical representation
I no monomial with null coefficient

type polynomial = Zero | Plus of monomial ∗ polynomial

let well_formed (p:polynomial):bool = ...
(* checks order of coef + no null coeff *)

Exercise: Some functions around polynomials

I Define a function that checks whether a polynomial is well-formed, by:
I checking that there is no null coefficient
I degrees are given in decreasing order

I Degree max: Propose a new implementation of the function degree max
supposing that a polynomial is well-formed

I Addition of two polynomials:
I Define a function that performs the addition between a polynomial and a

monomial
I Define a function that performs the addition between two polynomials

23 / 24

A recursive type: polynomials of 1 variable - ctd

Model 2:

I with canonical representation
I no monomial with null coefficient

type polynomial = Zero | Plus of monomial ∗ polynomial

let well_formed (p:polynomial):bool = ...
(* checks order of coef + no null coeff *)

Exercise: Some functions around polynomials

I Define a function that checks whether a polynomial is well-formed, by:
I checking that there is no null coefficient
I degrees are given in decreasing order

I Degree max: Propose a new implementation of the function degree max
supposing that a polynomial is well-formed

I Addition of two polynomials:
I Define a function that performs the addition between a polynomial and a

monomial
I Define a function that performs the addition between two polynomials

23 / 24

Conclusion

Recusion: a fundamental notion
There are two forms of recursion in computer science:

I recursive functions
I recursive equations
I termination
I definition = spec (description, profile, recursive equations, examples) +

implem + terminations
I pitfalls

I Recursive types/values/objects
I definition

I Recursive functions on recursive types

24 / 24

	Recursive functions
	Termination
	Recursive types
	Conclusion

