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In the previous episodes of INF 121

I Basic Types:
Type Operations Constants

Booleans not, &&, || true, false
Integers +,-,*,/,mod, ... ...,-1, 0, 1, ...

floats +.,-.,*.,/. 0.4, 12.3, 16. , 64.
char lowercase, code, ... ’a’, ’u’, ’A’, ...

I if ... then ... else ... conditional structure
I identifiers (local and global)
I defining and using functions
I Advanced types: synonym, enumerated, product, sum
I Pattern matching on simple and advanced expressions
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About recursion

What is recursion/a recursive definition?

Example (Some recursive objects)

La vache qui rit is a trademark

un, un+1. . .
Fibonacci

Images under Creative Common License

Recursive functions generalize recursive series

Largely used in Computer Science
↪→ a computer is a zoo of interacting recursive functions
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Recursive functions in OCaml
An introductory example

Example (Factorial)

{
0! = 1
n! = n × (n − 1)!, n ≥ 1

3! = 3× (3− 1)! = 3× 2!
= 3× 2× (2− 1)! = 3× 2× (2− 1)!
= 3× 2× 1× (1− 1)! = 3× 2× 1× 0! = . . . = 6

I This definition is sensible, it allows to obtain a result for all integers:
well-founded
(changing the − into + in the 2nd line makes the def not well-founded)

How can we detect whether a function or a program is well-founded?

Example (Defining factorial in OCaml)

let rec fact (n:int):int =
if n=0 then 1
else n ∗ fact(n−1)

let rec fact (n:int):int =
match n with

0→ 1
| n→ n ∗ fact(n−1)
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Defining a recursive function

Specification: description, signature, examples, and recursive equations

Implementation: defining a recursive function in OCaml

let rec fct_name (p1:t1) (p2:t2) ... (pn:tn):t = expr

where expr generally contains one or more occurrences of fct_name s.t.:
I Basis case: no call to the function currently defined
I Recursive calls to the currently defined function (with different

parameters)

Typing works as for non-recursive functions

Remark
I t1, .., tn can be any type (not necessarily integers) - cf. later
I A recursive function cannot be anonymous

�
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Defining some recursive functions

Example (Sum of integers from 0 to n)
description + profile + examples

{
u0 = 0
un = n + un−1 when 0 < n

let rec sum (n : int) : int =
match n with
| 0→ 0
| n→ n + sum (n − 1)

Example (Quotient of the Euclidian division)
description + profile + examples

a/b =

{
0 when a < b
1 + (a− b)/b when b ≤ a

let rec div (a : int) (b: int) : int =
if a < b then 0
else 1 + div (a − b) (b)

DEMO: some other recursive functions
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Calling a recursive function

“Unfolding the function body” – rewriting

Example (Factorial and Fibonacci’s call trees)

fact(0) = 1

fact(1)

fact(2)

fact(3) =3∗2=6

1

1 ∗ 1 = 1

2 ∗ 1 = 2

1∗

2∗

3∗ fib(4)=3∗2=6

fib(3)=2+1=3 fib(2)=1+1=1

fib(2)=1+1=2 fib(1)=1 fib(1)=1 fib(0)=1

fib(1)=1 fib(0)=1

I −→: rewriting generated calls and suspending operations
I 99K: evaluation (in the reverse order) of suspended operations

In OCaml: directive #trace DEMO: Tracing a function
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Let’s practice

Exercise: remainder of the Euclidean division
Define a function which computes the remainder of the Euclidean division

Exercise: The Fibonacci series
Implement a function which returns the nth Fibonacci number where n is
given as a parameter. Formally the Fibonacci series is defined as follows:

fibn =

{
1 when n = 0 or n = 1
fibn−1 + fibn−2 when n > 1

8 / 24



Let’s practice

Exercise: the power function (two ways)

{
x0 = 1
xn = x ∗ xn−1 when 0 < n


x0 = 1
xn = (x ∗ x)n/2 when n is even

xn = x ∗ (x ∗ x)
n−1

2 when n is odd

I Define function power: int→ int→ int twice following the two
equivalent mathematical definitions

I What is the difference between those two versions?

let rec pow (x:float) (n:int):int =
if (n=0) then 1
else x ∗ (pow x n−1)

let rec pow (x:float) (n:int):int =
if (n=0) then 1
else (
if (n mod 2=0) then (pow (x∗x) (n/2)
else pow (x∗x) ((n−1)/2)

)
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The Hanoi towers
A word about Divide and Conquer

Images under Creative Common License 10 / 24



Mutually recursive functions
On an example

So far “direct” recursion: a function fct contains calls to itself
What about a function f which calls g which calls f
↪→ mutually recursive functions

Example (Is a number odd or even)
How to determine whether an integer is odd or even without using
/, ∗, mod,and, more specifically using − and =?

I n ∈ N is odd if n − 1 is even
I n ∈ N is even if n − 1 is odd
I 0 is even
I 0 is not odd

let rec even (n:int):bool = if n=0 then true else odd (n−1)
and odd (m:int):bool = if m=0 then false else even (m−1)

DEMO: even and odd, mutually recursive
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Mutually recursive functions
Generalization

Mutually recursive functions

let rec fct1 [parameters+return type] = expr_1
and fct2 [parameters+return type] = expr_2

....
and fctn [parameters+return type] = expr_n

expr_1, expr_2, ..., expr_n may have calls to fct1, fct2, ..., fctn

12 / 24
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Termination

Do you think this function terminates (the McCarthy function)?

mac(n) =

{
n − 10 when n > 100
mac(mac(n + 11)) when n ≤ 100

What about these ones?

The power function{
x0 = 1
xn = x ∗ xn−1 when 0 < n

The factorial function
fact(0) 1
fact(1) = 1
fact(n) = fact(n+1)

n+1

We are only interested in terminating functions. . .

Can we have an intuitive characterization of termination w.r.t. the calling tree?
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How can we prove that a recursive function terminate?
Using a Measurement

Theorem
Every series of positive numbers which is strictly decreasing is converging

General methodology to show a function is terminating
From the def. of the function and its parameters, derive a measurement s.t.:

I it is positive
I the measurement strictly decreases between two recursive calls

each recursive call “brings us closer to the base case”

Example (Termination of the function sum)

let rec sum (n : int) : int =
match n with
| 0→ 0
| n→ n + sum (n − 1)

Measurement:
I Let’s defineM(n) = n
I M(n) ∈ N (according to the spec)
I M(n) >M(n − 1) since n > n − 1

14 / 24
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Termination of some functions

Exercise: finding measurements

Revisit the functions factorial, power, quotient, remainder and find
the measurement proving that your function terminates

15 / 24



Termination of some functions
factorial and power

Termination of fact:

let rec fact (n:int):int =
match n with

0→ 1
| n→ n ∗ fact(n−1)

I Let’s defineM(fact n) = n
I M(fact n) ∈ N (according to the

spec)
I M(fact n) >M(fact (n − 1))

since n > n − 1
Termination of power:

let rec power (a:float) (n:int):float =
if (n=0) then 1.
else (if n>0 then a ∗. power a (n−1)
else 1. /. (power a (n−1))

)

I Let’s defineM(power a n) = n
I M(power a n) ∈ N (according to the spec)
I M(power a n) >M(power a (n − 1))
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Termination of some functions

let rec quotient (a:int) (b:int):int =
if (a<b) then 0
else 1 + quotient (a−b) b

let rec remainder (a:int) (b:int):int =
if (a<b) then a
else remainder (a−b) b

Termination of quotient and remainder:

I Let’s defineM(X a b) = a
I M(X a b) ∈ N (according to the spec)
I M(X a b) >M(X (a− b) b) since b > 0

where X ∈ {quotient, remainder}
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Recursive types

Recursive functions are functions that appear in their own definition

Recursive types are types that appear in their own definition

General syntax: type new_type = ... new_type...

Recursive types should be well-founded

They make sense only for Union type with a non recursive constructor
(constant or not)

DEMO: (not) Well-founded types

DEMO: Metaphor of building a wall

Definition of a recursive function on a recursive type should follow the
recursive type

18 / 24
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A recursive type: Peano natural numbers
The mathematical and OCaml perspectives

Peano natural numbers NatPeano: an alternative definition of N

Recursive definition of NatPeano:
I a basis natural Zero
I a constructor: Suc: returns the successor of a NatPeano number
I Zero is the successor of no NatPeano number
I two NatPeano numbers having the same successor are equal

↪→ N can be defined as the set containing Zero and the successor of any
element it contains

Zero Suc(Zero) Suc(Suc(Zero)) . . .Suc Suc Suc

Defining NatPeano in OCaml:

type natPeano = Zero | Suc of natPeano

↪→ natPeano is a recursive sum type

19 / 24
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Peano natural numbers
Conversion to and from integers

Example (Converting a Peano natural number into an integer)

I Description: natPeano2int translates a Peano number into its usual
counterpart in the set of integers

I Profile/Signature: natPeano2int: natPeano→ int

I Ex.: natPeano2int Zero = 0,
natPeano2int Suc(Suc(Suc Zero))=3

let rec natPeano2int (n:natPeano):int =
match n with

Zero→ 0
| Suc (nprime)→ 1+ natPeano2int nprime

Example (Converting an integer into a Peano number)
Same as above but in the converse sense:

let rec int2natPeano (n:int):natPeano=
match n with
0→ Zero
| nprime→ Suc (int2natPeano (n−1))

DEMO: Functions natPeano2int and int2natPeano

20 / 24
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Peano natural numbers
Some functions: sum, product

Exercise: sum of two Peano numbers

I Define the function that sums two Peano numbers without using the
conversion from/to int

I Prove that your function terminates

Exercise: product of two Peano numbers

I Define the function that multiplies two Peano numbers
I Prove that your function terminates

Exercise: factorial of a Peano number

I Define the function that computes the factorial of a Peano number
I Prove that your function terminates

21 / 24



A recursive type: polynomials of 1 variable

A polynomial of one variable (a sum of monomials):

αnX n + αn−1X n−1 + . . .+ α1X 1 + α0

Let’s see it as a recursive object: a polynomial is either a monomial or the
sum of monomial and another polynomial

Model 1:

type coef = int
type degree = int
type monomial = coef ∗ degree
type polynomial = Mn of monomial

| Plus of monomial ∗ polynomial

DEMO: Model 1 of Polynomials + its disadvantages
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A recursive type: polynomials of 1 variable - ctd

Model 2:

I with canonical representation
I no monomial with null coefficient

type polynomial = Zero | Plus of monomial ∗ polynomial

let well_formed (p:polynomial):bool = ...
(* checks order of coef + no null coeff *)

Exercise: Some functions around polynomials

I Define a function that checks whether a polynomial is well-formed, by:
I checking that there is no null coefficient
I degrees are given in decreasing order

I Degree max: Propose a new implementation of the function degree max
supposing that a polynomial is well-formed

I Addition of two polynomials:
I Define a function that performs the addition between a polynomial and a

monomial
I Define a function that performs the addition between two polynomials
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Conclusion

Recusion: a fundamental notion
There are two forms of recursion in computer science:

I recursive functions
I recursive equations
I termination
I definition = spec (description, profile, recursive equations, examples) +

implem + terminations
I pitfalls

I Recursive types/values/objects
I definition

I Recursive functions on recursive types
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