
INF121:
Functional Algorithmic and Programming

Lecture 5: Lists

Academic Year 2011 - 2012

In the previous episodes of INF 121

I Basic Types: Booleans, Integers, Floats, Chars, String
I if ... then ... else ... conditional structure
I identifiers (local and global)
I defining and using functions
I Advanced types: synonym, enumerated, product, sum
I Pattern matching on simple and advanced expressions
I Recursion

I recursive functions and their termination
I recursive types and how to use them (in (recursive) functions + in pattern

matching)

1 / 22

About Lists
Some motivation

So far data (handled by functions) are simple: values of some (complex) type
↪→ how to manipulate an arbitrary number of values (of a given type)?

List are useful in modelling

Example (What can be modelled using lists)

I students of a class
I grades of a students
I the hand in a card-game

Lists have a special status in CS:
I often used (useful in modelling)
I easy to manipulate (simple basis operations + library of complex

operations)

Lists are first-class citizens in OCaml (contrarily to C)

2 / 22

About Lists
Some motivation

So far data (handled by functions) are simple: values of some (complex) type
↪→ how to manipulate an arbitrary number of values (of a given type)?

List are useful in modelling

Example (What can be modelled using lists)

I students of a class
I grades of a students
I the hand in a card-game

Lists have a special status in CS:
I often used (useful in modelling)
I easy to manipulate (simple basis operations + library of complex

operations)

Lists are first-class citizens in OCaml (contrarily to C)

2 / 22

Outline

3 / 22

Defining lists

What is a list?
I a finite series of values of the same type
I arbitrary length
I the order between its elements matters

Definition (Inductive (“recursive”) definition of lists)

Given a set E , the set of lists over E is the largest set s.t.:

1. it contains a basis element: nil

2. given a list l and e ∈ E , cons(e, l) is a list over E

Type List is a recursive union type:

1. A symbolic constant representing the empty list: Nil

2. A constructor, to “append an element to an existing list”: Cons

↪→ “à la Lisp”

Remark It differs from enumerated, product, and union types �

4 / 22

Defining lists

What is a list?
I a finite series of values of the same type
I arbitrary length
I the order between its elements matters

Definition (Inductive (“recursive”) definition of lists)

Given a set E , the set of lists over E is the largest set s.t.:

1. it contains a basis element: nil

2. given a list l and e ∈ E , cons(e, l) is a list over E

Type List is a recursive union type:

1. A symbolic constant representing the empty list: Nil

2. A constructor, to “append an element to an existing list”: Cons

↪→ “à la Lisp”

Remark It differs from enumerated, product, and union types �

4 / 22

Defining lists

What is a list?
I a finite series of values of the same type
I arbitrary length
I the order between its elements matters

Definition (Inductive (“recursive”) definition of lists)

Given a set E , the set of lists over E is the largest set s.t.:

1. it contains a basis element: nil

2. given a list l and e ∈ E , cons(e, l) is a list over E

Type List is a recursive union type:

1. A symbolic constant representing the empty list: Nil

2. A constructor, to “append an element to an existing list”: Cons

↪→ “à la Lisp”

Remark It differs from enumerated, product, and union types �

4 / 22

Syntax

Given some existing type t:

type list_of_t = Nil | Cons of t ∗ list_of_t

The list where elements are v1, v2, ..., vn (in this order) is noted:

Cons (v1, Cons (v2, ...,Cons (vn, Nil) ...))

More generally, elements of a list can be arbitrary expressions:

Cons (expr1, Cons (expr2, ...Cons (exprn, Nil) ...))

Remark
I Lists are values (can be used in the language constructs and functions)
I Order matters

�

DEMO: some list of integers

Remark Similarly, one can define lists of booleans, floats, functions. . . but it
is tedious �

5 / 22

Syntax

Given some existing type t:

type list_of_t = Nil | Cons of t ∗ list_of_t

The list where elements are v1, v2, ..., vn (in this order) is noted:

Cons (v1, Cons (v2, ...,Cons (vn, Nil) ...))

More generally, elements of a list can be arbitrary expressions:

Cons (expr1, Cons (expr2, ...Cons (exprn, Nil) ...))

Remark
I Lists are values (can be used in the language constructs and functions)
I Order matters

�

DEMO: some list of integers

Remark Similarly, one can define lists of booleans, floats, functions. . . but it
is tedious �

5 / 22

Syntax

Given some existing type t:

type list_of_t = Nil | Cons of t ∗ list_of_t

The list where elements are v1, v2, ..., vn (in this order) is noted:

Cons (v1, Cons (v2, ...,Cons (vn, Nil) ...))

More generally, elements of a list can be arbitrary expressions:

Cons (expr1, Cons (expr2, ...Cons (exprn, Nil) ...))

Remark
I Lists are values (can be used in the language constructs and functions)
I Order matters

�

DEMO: some list of integers

Remark Similarly, one can define lists of booleans, floats, functions. . . but it
is tedious �

5 / 22

Syntax

Given some existing type t:

type list_of_t = Nil | Cons of t ∗ list_of_t

The list where elements are v1, v2, ..., vn (in this order) is noted:

Cons (v1, Cons (v2, ...,Cons (vn, Nil) ...))

More generally, elements of a list can be arbitrary expressions:

Cons (expr1, Cons (expr2, ...Cons (exprn, Nil) ...))

Remark
I Lists are values (can be used in the language constructs and functions)
I Order matters

�

DEMO: some list of integers

Remark Similarly, one can define lists of booleans, floats, functions. . . but it
is tedious �

5 / 22

Typing

One new rule: All elements of the list should be of the same type

Previous typing rules applies to lists (with if...then...else, pattern
matching, functions)

DEMO: Illustration of typing rules

Remark Later we will see:
I type list_of_t = Nil | Cons of t ∗ list_of_t

is actually the type t list in OCaml, for any type t

I more convenient notations

(because lists are pre-defined in OCaml) �

6 / 22

Typing

One new rule: All elements of the list should be of the same type

Previous typing rules applies to lists (with if...then...else, pattern
matching, functions)

DEMO: Illustration of typing rules

Remark Later we will see:
I type list_of_t = Nil | Cons of t ∗ list_of_t

is actually the type t list in OCaml, for any type t

I more convenient notations

(because lists are pre-defined in OCaml) �

6 / 22

Back on pattern matching
Good news, it works for lists!

Pattern matching: an expression describing a computation performed
according to the “shape” (i.e., the pattern) of the given expression

I The shape is described using a filter/pattern
I The pattern allows to filter and name/extract values

Several possible shapes/patterns with lists:

Expected shape Filter
the empty list Nil
the non-empty list Cons (_, l), Cons (_, _),

Cons (e, l), Cons (e,_)
(dealing with integer)
the list with only one element: Cons (2,Nil)
the integer 2
(dealing with integer)
the (non-empty) list Cons(1,_),
where the first element is 1 Cons (1,l)
.

Remark Equivalent filters differ by the identifier they name in the associated
expressions �

7 / 22

Back on pattern matching
Good news, it works for lists!

Pattern matching: an expression describing a computation performed
according to the “shape” (i.e., the pattern) of the given expression

I The shape is described using a filter/pattern
I The pattern allows to filter and name/extract values

Several possible shapes/patterns with lists:

Expected shape Filter
the empty list Nil
the non-empty list Cons (_, l), Cons (_, _),

Cons (e, l), Cons (e,_)
(dealing with integer)
the list with only one element: Cons (2,Nil)
the integer 2
(dealing with integer)
the (non-empty) list Cons(1,_),
where the first element is 1 Cons (1,l)
.

Remark Equivalent filters differ by the identifier they name in the associated
expressions �

7 / 22

Some simple functions on list

DEMO: Simple functions and their alternative implementations

type intlist = Nil | Cons of int ∗ intlist

Example (Put an int as a singleton list - putAsList)
I Profile: putAsList: int→ intlist

I Description/Semantics: putAsList n is the singleton list with one
element which is n

I Examples: putAsList n = Cons (n,Nil)

Example (Head of a list - head)

I Profile: head: intlist→ int

I Description/Semantics: head l is the first element of list l, and returns
an error message if the list is empty

I Exs: head (Cons (1,Nil)) = 1, head Nil = ‘‘error message’’, . . .

Example (Other functions)

I remainder

I is_zero_the_head

I second

8 / 22

Some simple functions on list

DEMO: Simple functions and their alternative implementations

type intlist = Nil | Cons of int ∗ intlist
Example (Put an int as a singleton list - putAsList)

I Profile: putAsList: int→ intlist

I Description/Semantics: putAsList n is the singleton list with one
element which is n

I Examples: putAsList n = Cons (n,Nil)

Example (Head of a list - head)

I Profile: head: intlist→ int

I Description/Semantics: head l is the first element of list l, and returns
an error message if the list is empty

I Exs: head (Cons (1,Nil)) = 1, head Nil = ‘‘error message’’, . . .

Example (Other functions)

I remainder

I is_zero_the_head

I second

8 / 22

Some simple functions on list

DEMO: Simple functions and their alternative implementations

type intlist = Nil | Cons of int ∗ intlist
Example (Put an int as a singleton list - putAsList)

I Profile: putAsList: int→ intlist

I Description/Semantics: putAsList n is the singleton list with one
element which is n

I Examples: putAsList n = Cons (n,Nil)

Example (Head of a list - head)

I Profile: head: intlist→ int

I Description/Semantics: head l is the first element of list l, and returns
an error message if the list is empty

I Exs: head (Cons (1,Nil)) = 1, head Nil = ‘‘error message’’, . . .

Example (Other functions)

I remainder

I is_zero_the_head

I second

8 / 22

Some simple functions on list

DEMO: Simple functions and their alternative implementations

type intlist = Nil | Cons of int ∗ intlist
Example (Put an int as a singleton list - putAsList)

I Profile: putAsList: int→ intlist

I Description/Semantics: putAsList n is the singleton list with one
element which is n

I Examples: putAsList n = Cons (n,Nil)

Example (Head of a list - head)

I Profile: head: intlist→ int

I Description/Semantics: head l is the first element of list l, and returns
an error message if the list is empty

I Exs: head (Cons (1,Nil)) = 1, head Nil = ‘‘error message’’, . . .

Example (Other functions)

I remainder

I is_zero_the_head

I second

8 / 22

Dealing with empty lists
Four alternatives

1. return error message, as in the previous demo

2. define a specific type: the non-empty lists

type nonempty_intlist =
Elt of int
| Cons of int ∗ nonempty_intlist

3. return a boolean with the result indicating whether it should be
considered/ is meaningful
↪→result usage is guarded by the returned boolean

4. not consider the empty list in the function:
↪→ thus one accepts the warning provided by the pattern matching
↪→ be careful when calling the function

DEMO: Four alternatives on the function head

9 / 22

Dealing with empty lists
Four alternatives

1. return error message, as in the previous demo

2. define a specific type: the non-empty lists

type nonempty_intlist =
Elt of int
| Cons of int ∗ nonempty_intlist

3. return a boolean with the result indicating whether it should be
considered/ is meaningful
↪→result usage is guarded by the returned boolean

4. not consider the empty list in the function:
↪→ thus one accepts the warning provided by the pattern matching
↪→ be careful when calling the function

DEMO: Four alternatives on the function head

9 / 22

Dealing with empty lists
Four alternatives

1. return error message, as in the previous demo

2. define a specific type: the non-empty lists

type nonempty_intlist =
Elt of int
| Cons of int ∗ nonempty_intlist

3. return a boolean with the result indicating whether it should be
considered/ is meaningful
↪→result usage is guarded by the returned boolean

4. not consider the empty list in the function:
↪→ thus one accepts the warning provided by the pattern matching
↪→ be careful when calling the function

DEMO: Four alternatives on the function head

9 / 22

Dealing with empty lists
Four alternatives

1. return error message, as in the previous demo

2. define a specific type: the non-empty lists

type nonempty_intlist =
Elt of int
| Cons of int ∗ nonempty_intlist

3. return a boolean with the result indicating whether it should be
considered/ is meaningful
↪→result usage is guarded by the returned boolean

4. not consider the empty list in the function:
↪→ thus one accepts the warning provided by the pattern matching
↪→ be careful when calling the function

DEMO: Four alternatives on the function head

9 / 22

Recursive functions on lists

Most of the problems on lists are solved using recursion/induction because
lists are a recursive type
A list is either

a) the empty list

b) a non-empty list

Remark Similarity with Peano numbers �

Body of a recursive function on lists
Consists in a case analysis “mimicking/following” the structure of the
argument list

a) treatment for the empty list (Nil)

b) treatment for the non-empty list (Cons (elt,remainder)):

computation depending on 1) the current element 2) the result of the
function on the remainder

↪→ defining the function on cases a) and b) suffices to define the function

To define f: list_of_t1→ t2, a recursive function:

a) f Nil = . . .some value in t2. . .

b) f (Cons (elt, remainder)) = g (h elt, f remainder)
where g: t1→ t3 and g: t3→ t2→ t2

10 / 22

Recursive functions on lists

Most of the problems on lists are solved using recursion/induction because
lists are a recursive type
A list is either

a) the empty list

b) a non-empty list

Remark Similarity with Peano numbers �

Body of a recursive function on lists
Consists in a case analysis “mimicking/following” the structure of the
argument list

a) treatment for the empty list (Nil)

b) treatment for the non-empty list (Cons (elt,remainder)):

computation depending on 1) the current element 2) the result of the
function on the remainder

↪→ defining the function on cases a) and b) suffices to define the function

To define f: list_of_t1→ t2, a recursive function:

a) f Nil = . . .some value in t2. . .

b) f (Cons (elt, remainder)) = g (h elt, f remainder)
where g: t1→ t3 and g: t3→ t2→ t2

10 / 22

Recursive functions on lists

Most of the problems on lists are solved using recursion/induction because
lists are a recursive type
A list is either

a) the empty list

b) a non-empty list

Remark Similarity with Peano numbers �

Body of a recursive function on lists
Consists in a case analysis “mimicking/following” the structure of the
argument list

a) treatment for the empty list (Nil)

b) treatment for the non-empty list (Cons (elt,remainder)):

computation depending on 1) the current element 2) the result of the
function on the remainder

↪→ defining the function on cases a) and b) suffices to define the function

To define f: list_of_t1→ t2, a recursive function:

a) f Nil = . . .some value in t2. . .

b) f (Cons (elt, remainder)) = g (h elt, f remainder)
where g: t1→ t3 and g: t3→ t2→ t2

10 / 22

Defining some recursive functions on lists

Example (Length of a list)
The length of a list is its number of elements

I Profile: length: intlist→ int

I Semantics: length l = |l|, the number of elements
I Examples: length Nil=0, length (Cons(9,Nil))=1. . .
I Recursive equations:

length Nil = 0
length (Cons(a, l)) = 1 + length l

I Termination:
I Let’s define measure(length l) = size(l) where size(l) is the number of

applications of the constructor Cons to get l
I We have: measure(length Cons(_, l)) > measure(length l)

I Implementation:
let rec length (l:intlist):int=
match l with

| Nil→ 0
| Cons (_,l)→ 1+length l

DEMO: Example of execution of Cons(1,Cons(2,Nil))
11 / 22

Defining some recursive functions on lists - ctd
Lists of integers

Example (Lists of integers)

I sum: returns the sum of the elements of the list
I belongsto: indicates whether an element belongs to a list
I last_element: returns the last element of a list
I minimum: returns the minimum of a list of integers
I interval: returns the interval, as a list, given the left and right bound

of the interval
I evens: getting the even integers of a list
I replace: replacing all occurrences of an element by another element
I concatenate: concatenating two lists
I split: split a list of pairs into a pair of lists
I is_increasing: is a list in increasing order

12 / 22

Defining some recursive functions on lists - ctd
List of cards

Example (Lists of cards)

type card = Petite of int | Valet | Dame | Roi | As
type main = Nil | Cons of card ∗ main

I points_card: card→ int

I points_main: main→ int

13 / 22

OCaml pre-defined implementation of lists

OCaml proposes a pre-defined implementation of lists
(in the Standard library)

I Nil is noted []
I Cons is replaced by the infix operator ::

Example (List in OCaml notation)
I Cons (2, Nil) is noted [2]
I Cons (4,Cons (9, Nil)) is noted 4::(9::[])

Some shortcuts (syntactic sugar):
I v1::(v2::...::(vn::[])) can be noted v1::v2:: ...vn::[]
I v1::v2::... vn::[] can be noted [v1;v2;...;vn]

Type: list_of_t becomes t list

DEMO: OCaml pre-defined lists

14 / 22

Back to the language constructs
Nothing changes

Same rules apply for if...then...else construct and function calls

Pattern matching: same rule/possibilities, different syntax:

Expected shape Filter
the empty list []
the non-empty list _::_ _::l

e::_ e::l
(dealing with integer)
the list with only one element: [2], 2::[]
the integer 2
(dealing with integer)
the (non-empty) list 1::l,
where the first element is 1 1::_
.

15 / 22

Revisiting the previous functions using OCaml predefined lists

Example (Lists of integers)

I putAsList, head, remainder, is_zero_the_head, second
I sum: returns the sum of the elements of the list
I belongsto: indicates whether an element belongs to a list
I last_element: returns the last element of a list
I minimum: returns the minimum of a list of integers
I interval: returns the interval, as a list, given the left and right bound

of the interval
I evens: getting the even integers of a list
I replace1: replacing all occurrences of an element by another element
I concatenate: concatenate two lists
I is_increasing: determines if a list is in increasing order
I reverse: produces the list as if the initial list is read from right to left

DEMO: Implementing some of these functions

16 / 22

Some functions using OCaml predefined lists

Example (sublist: is a list is a sublist of another?)
Indicates whether a list is a sublist of another by erasing
For example:

I [e2 ; e4 ; e5] is a subsequence of [e1 ; e2 ; e3 ; e4 ; e5 ; e6]
I [e2 ; e4 ; e5 ; e7] is NOT a subsequence of e1 ; e2 ; e3 ; e4 ; e5 ; e6]
I [e4 ; e2 ; e5] is NOT a sublist of [e1 ; e2 ; e3 ; e4 ; e5 ; e6]

Analysis:
I predicate taking two sequences as parameters
I the second sequence is obtained by erasing: elements of the first

sequence are elements of the second sequence

DEMO: Implementing sublist

Example (Lists of integers)

I zip: takes a pair of lists and returns the list of corresponding pairs
I

DEMO: Implementing some of these functions
17 / 22

Some predefined functions in the list module

Functions OCaml implem
(as we defined them)
nth List.nth
length List.length
head List.hd
tail List.tl
concatenate @, List.append
reverse List.rev

18 / 22

Sorting lists
Motivations

Sorting ≈ organizing a list according to some order (e.g., < for int):

unsorted list
sorting−→ sorted list

Example

[2;1;9;4]
sorting−→ [1;2;4;9]

I type person = Toto | Titi | Tata

I [Titi;Tata;Toto]
sorting−→ [Toto;Titi;Tata]

Motivations?
I more informative, depending on the context
I easier to browse/modify
I . . .

Several sorting algorithms that differ by
I how “fast” they are
I how “much memory” they need
I how they behave depending on the input (unsorted) list

→ “tasting some sorting algorithms”

19 / 22

Sorting lists
Motivations

Sorting ≈ organizing a list according to some order (e.g., < for int):

unsorted list
sorting−→ sorted list

Example

[2;1;9;4]
sorting−→ [1;2;4;9]

I type person = Toto | Titi | Tata

I [Titi;Tata;Toto]
sorting−→ [Toto;Titi;Tata]

Motivations?
I more informative, depending on the context
I easier to browse/modify
I . . .

Several sorting algorithms that differ by
I how “fast” they are
I how “much memory” they need
I how they behave depending on the input (unsorted) list

→ “tasting some sorting algorithms”

19 / 22

Sorting lists
Motivations

Sorting ≈ organizing a list according to some order (e.g., < for int):

unsorted list
sorting−→ sorted list

Example

[2;1;9;4]
sorting−→ [1;2;4;9]

I type person = Toto | Titi | Tata

I [Titi;Tata;Toto]
sorting−→ [Toto;Titi;Tata]

Motivations?
I more informative, depending on the context
I easier to browse/modify
I . . .

Several sorting algorithms that differ by
I how “fast” they are
I how “much memory” they need
I how they behave depending on the input (unsorted) list

→ “tasting some sorting algorithms”

19 / 22

Sorting lists
Motivations

Sorting ≈ organizing a list according to some order (e.g., < for int):

unsorted list
sorting−→ sorted list

Example

[2;1;9;4]
sorting−→ [1;2;4;9]

I type person = Toto | Titi | Tata

I [Titi;Tata;Toto]
sorting−→ [Toto;Titi;Tata]

Motivations?
I more informative, depending on the context
I easier to browse/modify
I . . .

Several sorting algorithms that differ by
I how “fast” they are
I how “much memory” they need
I how they behave depending on the input (unsorted) list

→ “tasting some sorting algorithms”

19 / 22

Sorting lists
Some preliminary functions

Example (Searching an element in a sorted list)
It narrows the search (when one passes over the searched element)

let rec belongstosortedlist (e:int) (l:int list):bool=
match l with

| []→ false
| x::lp→ e=x || (e > x) && belongstosortedlist e lp

Example (Inserting an element in a sorted list)

let rec insert (e:int) (l:int list):int list=
match l with

| []→ [e]
| x::lp→ if e<x then e::l else x::(insert e lp)

20 / 22

Some sorting algorithms
to be implemented

Exercise: Sorting by insertion

“Isolate an element (e.g., the head), sort other elements, and then insert the
isolated element at the correct position”

Exercise: sorting by selection

“Extract the least element which becomes the next on the resulting list”
Hints: you are going to need two functions:

I min_list: returns the minimal element of a list
I suppress: suppresses the first occurrence of an element in a list

21 / 22

Conclusion
Lists: a very practical data type

I Can be defined explicitly as a recursive union type
I operators Cons, Nil
I first-class citizens
I typing rules apply
I less practical: a lot to write, operators for each type of list

I We can use the syntactic sugar of OCaml: ::, [], @, [v1;v2;...;vn]
I Recursive functions on lists:

I define the base case(s)
I define the inductive case

I Sorting lists: insertion sort, selection sort

Assignment

I Double-check that you are able to fully define the functions of this lecture
I Revisit all functions that fail on some argument list and implement the

alternatives, as seen for the head function
I Revisit all functions implemented “à la Lisp” using the shorter notation

provided by OCaml
I Visit OCaml standard library on List (find the implemented functions in

the lecture + play/test the other functions)
22 / 22

