UNIVERSITE
JOSEPH FOURIER

INF121:
Functional Algorithmic and Programming
Lecture 5: Lists

Academic Year 2011 - 2012

f(X)

In the previous episodes of INF 121

» Basic Types: Booleans, Integers, Floats, Chars, String
» if .. then ... else ... conditional structure

» identifiers (local and global)

» defining and using functions

» Advanced types: synonym, enumerated, product, sum

» Pattern matching on simple and advanced expressions
» Recursion

» recursive functions and their termination
> recursive types and how to use them (in (recursive) functions + in pattern
matching)

22

About Lists

Some motivation
So far data (handled by functions) are simple: values of some (complex) type
< how to manipulate an arbitrary number of values (of a given type)?

List are useful in modelling

Example (What can be modelled using lists)

» students of a class
» grades of a students
» the hand in a card-game

22

About Lists

Some motivation
So far data (handled by functions) are simple: values of some (complex) type
< how to manipulate an arbitrary number of values (of a given type)?

List are useful in modelling

Example (What can be modelled using lists)

» students of a class
» grades of a students
» the hand in a card-game

Lists have a special status in CS:
» often used (useful in modelling)

» easy to manipulate (simple basis operations + library of complex
operations)

Lists are first-class citizens in OCaml (contrarily to C)

Outline

/22

Defining lists

What is a list?
» a finite series of values of the same type
» arbitrary length
» the order between its elements matters

22

Defining lists

What is a list?
» a finite series of values of the same type
» arbitrary length
» the order between its elements matters

Given a set E, the set of lists over E is the largest set s.t.:
1. it contains a basis element: nil
2. givenalist/and e € E, cons(e, /) is a list over E

4/22

Defining lists

What is a list?
» a finite series of values of the same type
» arbitrary length
» the order between its elements matters

Given a set E, the set of lists over E is the largest set s.t.:
1. it contains a basis element: nil
2. givenalist/and e € E, cons(e, /) is a list over E

Type List is a recursive union type:

1. A symbolic constant representing the empty list: Nil

2. A constructor, to “append an element to an existing list”: Cons
— “ala Lisp”

It differs from enumerated, product, and union types

Syntax

Given some existing type t:

type list_of_t =Nil|Cons of t x list_of_t

22

Syntax

Given some existing type t:

type list_of_t =Nil|Cons of t x list_of_t

The list where elements are v1, v2, ..., vn (in this order) is noted:

Cons (v1, Cons (v2, ...,Cons (vn, Nil) ...))
More generally, elements of a list can be arbitrary expressions:

Cons (exprl, Cons (expr2, ...Cons (exprn, Nil) ...))

22

Syntax

Given some existing type t:

type list_of_t =Nil|Cons of t x list_of_t

The list where elements are v1, v2, ..., vn (in this order) is noted:
Cons (v1, Cons (v2, ...,Cons (vn, Nil) ...))
More generally, elements of a list can be arbitrary expressions:

Cons (exprl, Cons (expr2, ...Cons (exprn, Nil) ...))

» Lists are values (can be used in the language constructs and functions)
» Order matters

22

Syntax

Given some existing type t:

type list_of_t =Nil|Cons of t x list_of_t

The list where elements are v1, v2, ..., vn (in this order) is noted:
Cons (v1, Cons (v2, ...,Cons (vn, Nil) ...))
More generally, elements of a list can be arbitrary expressions:

Cons (exprl, Cons (expr2, ...Cons (exprn, Nil) ...))

» Lists are values (can be used in the language constructs and functions)
» Order matters

Similarly, one can define lists of booleans, floats, functions. .. but it
is tedious

22

Typing

One new rule: All elements of the list should be of the same type

Previous typing rules applies to lists (with i f...then...else, pattern
matching, functions)

22

Typing

One new rule: All elements of the list should be of the same type

Previous typing rules applies to lists (with i f...then...else, pattern
matching, functions)

Later we will see:

» type list_of_t =Nil |Consof t * list_of_t
is actually the type t 1ist in OCaml, for any type t

» more convenient notations
(because lists are pre-defined in OCaml)

22

Back on pattern matching

Good news, it works for lists!
Pattern matching: an expression describing a computation performed
according to the “shape” (i.e., the pattern) of the given expression
» The shape is described using a filter/pattern
» The pattern allows to filter and name/extract values

22

Back on pattern matching

Good news, it works for lists!

Pattern matching: an expression describing a computation performed
according to the “shape” (i.e., the pattern) of the given expression

» The shape is described using a filter/pattern
» The pattern allows to filter and name/extract values
Several possible shapes/patterns with lists:

| Expected shape | Filter |
the empty list Nil
the non-empty list Cons (_, 1), Cons (_, _),

Cons (e, 1), Cons (e,_)

(dealing with integer)
the list with only one element: | Cons (2,Ni1)
the integer 2

(dealing with integer)
the (non-empty) list Cons(1,_),
where the first element is 1 Cons (1,1)

Equivalent filters differ by the identifier they name in the associated
expressions

22

Some simple functions on list

‘ DEMO: Simple functions and their alternative implementations

type intlist =Nil | Cons of int * intlist

8/22

Some simple functions on list

‘ DEMO: Simple functions and their alternative implementations

type intlist =Nil | Cons of int * intlist
Example (Put an int as a singleton list - putasList)
» Profile: putAsList: int — intlist

» Description/Semantics: putAsList n is the singleton list with one
element which is n

» Examples: putAsList n = Cons (n,Nil)

22

Some simple functions on list

‘ DEMO: Simple functions and their alternative implementations

type intlist =Nil | Cons of int * intlist
Example (Put an int as a singleton list - putaAsList)
» Profile: putAsList: int — intlist

» Description/Semantics: putAsList n is the singleton list with one
element which is n

» Examples: putAsList n = Cons (n,Nil)
Example (Head of a list - head)

» Profile: head: intlist — int

» Description/Semantics: head 1 is the first element of list 1, and returns
an error message if the list is empty

» Exs: head (Cons (1,Ni1)) =1, head Nil = “error message’, ...

22

Some simple functions on list

‘ DEMO: Simple functions and their alternative implementations

type intlist =Nil | Cons of int * intlist
Example (Put an int as a singleton list - putaAsList)
» Profile: putAsList: int — intlist

» Description/Semantics: putAsList n is the singleton list with one
element which is n

» Examples: putAsList n = Cons (n,Nil)
Example (Head of a list - head)

» Profile: head: intlist — int

» Description/Semantics: head 1 is the first element of list 1, and returns
an error message if the list is empty

» Exs: head (Cons (1,Nil)) =1, head Nil = “error message”, ...
Example (Other functions)
> remainder

» is_zero_the_head

> second

22

Dealing with empty lists

Four alternatives

1. return error message, as in the previous demo

22

Dealing with empty lists

Four alternatives

1. return error message, as in the previous demo
2. define a specific type: the non-empty lists

type nonempty_intlist =
Elt of int
| Cons of int * nonempty_intlist

22

Dealing with empty lists

Four alternatives

1. return error message, as in the previous demo
2. define a specific type: the non-empty lists

type nonempty_intlist =
Elt of int
| Cons of int * nonempty_intlist

3. return a boolean with the result indicating whether it should be
considered/ is meaningful
—result usage is guarded by the returned boolean

Dealing with empty lists

Four alternatives

1. return error message, as in the previous demo
2. define a specific type: the non-empty lists

type nonempty_intlist =
Elt of int
| Cons of int * nonempty_intlist

3. return a boolean with the result indicating whether it should be
considered/ is meaningful
—result usage is guarded by the returned boolean

4. not consider the empty list in the function:
— thus one accepts the warning provided by the pattern matching
— be careful when calling the function

head

Recursive functions on lists

Most of the problems on lists are solved using recursion/induction because
lists are a recursive type
A list is either

a) the empty list
b) a non-empty list

Similarity with Peano numbers

10/22

Recursive functions on lists

Most of the problems on lists are solved using recursion/induction because
lists are a recursive type

A list is either o

a) the empty list Similarity with Peano numbers

b) a non-empty list

Body of a recursive function on lists
Consists in a case analysis “mimicking/following” the structure of the
argument list

a) treatment for the empty list (Nil)
b) treatment for the non-empty list (Cons (elt,remainder)):

computation depending on 1) the current element 2) the result of the
function on the remainder

— defining the function on cases a) and b) suffices to define the function

10/22

Recursive functions on lists

Most of the problems on lists are solved using recursion/induction because
lists are a recursive type
A list is either

a) the empty list
b) a non-empty list

Similarity with Peano numbers

Body of a recursive function on lists
Consists in a case analysis “mimicking/following” the structure of the
argument list

a) treatment for the empty list (Nil)
b) treatment for the non-empty list (Cons (elt,remainder)):

computation depending on 1) the current element 2) the result of the
function on the remainder

— defining the function on cases a) and b) suffices to define the function

To define f: 1ist_of_t1 — t2, a recursive function:
a) £Nil=...some value in t2...

b) £ (Cons (elt, remainder)) =g (helt, f remainder)
where g:tl —»t3andg:t3 — t2 — t2

10/22

Defining some recursive functions on lists

Example (Length of a list)
The length of a list is its number of elements
» Profile: length: intlist — int
» Semantics: length 1 = |/|, the number of elements

v

Examples: length Ni1=0, length (Cons(9,Nil))=1...
» Recursive equations:

length Nil =0
length (Cons(a,l)) =1+length |/

» Termination:

> Let’s define measure(length 1) = size(1) where size(1) is the number of
applications of the constructor Cons to get /
> We have: measure(length Cons(_,1)) > measure(length 1)

Implementation:
let rec length (1:intlist):int=
match 1 with

|Nil — 0

| cons (_,1) = 1+length 1

v

Cons(1,Cons(2,Nil

11/22

Defining some recursive functions on lists - ctd

Lists of integers

Example (Lists of integers)

» sum: returns the sum of the elements of the list

» belongsto: indicates whether an element belongs to a list
» last_element: returns the last element of a list

» minimum: returns the minimum of a list of integers

» interval: returns the interval, as a list, given the left and right bound
of the interval

» evens: getting the even integers of a list

» replace: replacing all occurrences of an element by another element
» concatenate: concatenating two lists

» split: split a list of pairs into a pair of lists

» is_increasing: is alistin increasing order

12/22

Defining some recursive functions on lists - ctd

List of cards

Example (Lists of cards)

type card =Petite of int | Valet | Dame | Roi | As
typemain=Nil | Cons of card * main

» points_card: card — int

> points_main:main — int

13/22

OCaml pre-defined implementation of lists
OCaml proposes a pre-defined implementation of lists
(in the Standard library)

» Nilis noted|]
» Cons is replaced by the infix operator :

Example (List in OCaml notation)
» Cons (2, Nil) is noted [2]

» Cons (4,Cons (9, Nil)) is noted 4::(9:[])

Some shortcuts (syntactic sugar):

Type: 1ist_of_t becomes t 1ist

14/22

Back to the language constructs
Nothing changes

Same rules apply for i f...then...else construct and function calls

Pattern matching: same rule/possibilities, different syntax:

Expected shape | Filter

the empty list 0
the non-empty list i

(dealing with integer)
the list with only one element: | [2], 2:[]
the integer 2

(dealing with integer)
the (non-empty) list 1:1,
where the first element is 1

15/22

Revisiting the previous functions using OCaml predefined lists

Example (Lists of integers)

|

putAsList, head, remainder, is_zero_the_head, second
sum: returns the sum of the elements of the list

belongsto: indicates whether an element belongs to a list
last_element: returns the last element of a list

minimum: returns the minimum of a list of integers

interval: returns the interval, as a list, given the left and right bound
of the interval

evens: getting the even integers of a list

replacel: replacing all occurrences of an element by another element
concatenate: concatenate two lists

is_increasing: determines if a list is in increasing order

reverse: produces the list as if the initial list is read from right to left

16/22

Some functions using OCaml predefined lists

Example (sublist: is alist is a sublist of another?)

Indicates whether a list is a sublist of another by erasing
For example:

» [e2;e4;e5]isasubsequenceof[el;e2;e3;ed ;e5;eb]
» [e2;ed4;e5;e7]is NOT a subsequence of el ;e2;e3;e4d ;eb;eb]
» [ed;e2;e5]is NOT asublistof[el ;e2;e3;ed;e5;e6]
Analysis:
» predicate taking two sequences as parameters

» the second sequence is obtained by erasing: elements of the first
sequence are elements of the second sequence

sublist

Example (Lists of integers)

» zip: takes a pair of lists and returns the list of corresponding pairs

>

Some predefined functions in the list module

Functions OCaml implem
(as we defined them)

nth List.nth
length List.length
head List.hd

tail List.tl
concatenate @, List.append
reverse List.rev

18/22

Sorting lists

Motivations
Sorting = organizing a list according to some order (e.g., < for int):

., sortin .
unsorted list ™ sorted list

19/22

Sorting lists

Motivations

Sorting = organizing a list according to some order (e.g., < for int):

sorting

unsorted list — sorted list
Example
sortin > type person = Toto | Titi | Tata
[2;1;9;4] % [1;2;4;9] soring

» [Titi;Tata;Toto] — [Toto;Titi;Tata]

19/22

Sorting lists

Motivations

Sorting = organizing a list according to some order (e.g., < for int):

sorting

unsorted list — sorted list
Example
sorng > type person = Toto | Titi | Tata
[2,1 ,9 4] [1 ;2;4;9] sortmg e
» [Titi;Tata;Toto] — [Toto;Titi;Tata]
Motivations?

» more informative, depending on the context
» easier to browse/modify

> ...

19/22

Sorting lists

Motivations

Sorting = organizing a list according to some order (e.g., < for int):

sorting

unsorted list — sorted list

Example
sorng > type person = Toto | Titi | Tata
[2,1 ,9 4] [1 ;2;4;9] sortmg e
» [Titi;Tata;Toto] — [Toto;Titi;Tata]
Motivations?

» more informative, depending on the context
» easier to browse/modify

> ...

Several sorting algorithms that differ by
» how “fast” they are
» how “much memory” they need
» how they behave depending on the input (unsorted) list

— “tasting some sorting algorithms”

19/22

Sorting lists

Some preliminary functions

Example (Searching an element in a sorted list)
It narrows the search (when one passes over the searched element)

let rec belongstosortedlist (e:int) (1:int list)bool=
match 1 with
|[] — false
| x::1p — e=x || (e > x) && belongstosortedlist e 1p

Example (Inserting an element in a sorted list)

let rec insert (e:int) (1:int list):int lists=
match 1 with
[l = [e]

| xi:lp — 1f e<x then el else x:i(insert e 1p)

20/22

Some sorting algorithms

to be implemented

“Isolate an element (e.g., the head), sort other elements, and then insert the
isolated element at the correct position”

“Extract the least element which becomes the next on the resulting list”
Hints: you are going to need two functions:

» min_list: returns the minimal element of a list
» suppress: suppresses the first occurrence of an element in a list

21/22

Conclusion
Lists: a very practical data type

» Can be defined explicitly as a recursive union type

> operators Cons, Nil
» first-class citizens

> typing rules apply
> less practical: a lot to write, operators for each type of list

» We can use the syntactic sugar of OCaml: ::, [], @, [v1;v2;...;vn]
» Recursive functions on lists:

» define the base case(s)
> define the inductive case

» Sorting lists: insertion sort, selection sort

» Double-check that you are able to fully define the functions of this lecture

» Reuvisit all functions that fail on some argument list and implement the
alternatives, as seen for the head function

» Reuvisit all functions implemented “a la Lisp” using the shorter notation
provided by OCaml

» Visit OCaml standard library on List (find the implemented functions in

the lecture + play/test the other functions)
22/22

