UNIVERSITE
JOSEPH FOURIER

INF121:
Functional Algorithmic and Programming
Lecture 6: Polymorphism, Higher-order, and Currying

Academic Year 2011 - 2012

fv

In the previous episodes of INF 121

» Basic Types: Booleans, Integers, Floats, Chars, String
» if ...then ... else ... conditional structure

» identifiers (local and global)

» defining and using functions

» Advanced types: synonym, enumerated, product, sum

» Pattern matching on simple and advanced expressions
» Recursion

> recursive functions and their termination
> recursive types and how to use them (in (recursive) functions + in pattern
matching)

» List (recursive type) with Cons/Nil and OCaml’s pre-defined notations

Outline

Polymorphism

Higher-Order

Currying

Outline

Polymorphism

Motivating polymorphism on examples

Limitations of Functions

About the identity function:
» Identity on int:
let id (x!int)iint =x val id:int — int = <fun>
» |dentity on float:
let id (x:float):float =x val id: float — float = <fun>

» Identity on char
let id (x:char)ichar = x val id:char — char = <fun>

Motivating polymorphism on examples

Limitations of Functions

About the identity function:
» Identity on int:
let id (x!int)iint =x val id:int — int = <fun>

» |dentity on float:
let id (x:float):float =x val id: float — float = <fun>

» Identity on char
let id (x:char)ichar = x val id:char — char = <fun>

Disadvantages:
» 1 function per type needing the identity function
» Unique/Different names needed if these functions should “live” together

Motivating polymorphism on examples

Limitations of Functions on list

Compute the length of a list:
» of int:

let rec length_int (1:int list)iint=
match 1 with

[[1—=0

| _:1 —1+length_int 1

» on char:

let rec length_char (1: char list):int=
match 1 with
[[1—0
| i1 — 1+ length_char 1l

34

Motivating polymorphism on examples

Limitations of Functions on list

Compute the length of a list:
» of int:
let rec length_int (1:int list)iint=
match 1 with

[[1—=0
_ul — 1+ length_int
1 1+1 h_i 1

» on char:

let rec length_char (1: char list):int=
match 1 with
[[1—0
| i1 — 1+ length_char 1l

Remark The body of these functions is not specific to char nor int

— we need lists that are not bound to a type

34

Motivating polymorphism on examples

Limitations of (current) lists

Several sorts of lists, a la Lisp:
» type listofint =Nil |Cons int * listofint
and then Cons (2, Cons (9,Ni1))
» type listofchar =Nil | Cons char * listofchar
and then Cons ('t’, Cons ('v’,Nil))

34

Motivating polymorphism on examples

Limitations of (current) lists

Several sorts of lists, a la Lisp:

» type listofint =Nil |Cons int * listofint
and then Cons (2, Cons (9,Ni1))

» type listofchar =Nil | Cons char * listofchar
and then Cons ('t’, Cons ('v’,Nil))

Several sorts of lists, even with OCaml shorter notations:
> list of int: [1;2] (=1::2:[]) of type int 1ist
» list of char: ['e’; 'n’] (=" b i’ n ;[]) of type char 1ist
» list of string: [“toto”;“titi”] (="toto”"titi”:[]) of type
string list

34

Back on the examples - introducing polymorphism

Let’s come back on the (various) identity functions

What if we omit type?
let idx=x val id: a — ' a=<fun>

34

Back on the examples - introducing polymorphism

Let’s come back on the (various) identity functions

What if we omit type?
let idx=x val id: a — ' a=<fun>

— type inference: OCaml computes the most general type
— polymorphic identity: the id on any type (« or’ a)

“id is a polymorphic function” that can be applied to any value

We can specifically indicate that the function can take any type:

let id(x:’a):'a=x
equivalently let id(x:’b):’b=x
equivalently let id(x:’toto):’ toto=x

— the type returned by OCamlis’ a — '’ a
(equivalently a—«)

Polymorphic lists

We can define lists that are parameterized by some type (a la Lisp)
type 't 11ist =Nil |Cons of 't x 't 11ist
't is a type parameter
OCaml pre-defined lists are already parameterized by some type:
» typeof[]is ’alist (equivalently o 1ist)
» typeofiis 'a—'alist - alist
(equivalently a—a 1ist—a list)

Still, the elements should have the same type

Polymorphic lists

We can define lists that are parameterized by some type (a la Lisp)
type 't 11ist =Nil |Cons of 't x 't 11ist
't is a type parameter
OCaml pre-defined lists are already parameterized by some type:
» typeof[]is ’alist (equivalently o 1ist)
» typeofiis 'a—'alist - alist
(equivalently a—a 1ist—a list)

Still, the elements should have the same type

Example
» Cons (2,Cons (3,Cons (4,Ni1)))
» Cons ('r’,Cons ('d’,Cons ('w’,Nil)))
» Cons ((fun x — x), Cons ((fun x — 3xx+2), Nil))

Polymorphic functions on Polymorphic lists

Let’s practice

Example (Length of a list)
Ala Lisp: OCaml pre-defined lists:

let rec length (1:’a 1list):iint let rec length (1:’a list)iint

match 1 with match 1 with
[Nil —0 [—0
| cons (_,1) =+ 1+ length 1 | 1 =1+ lengthl

34

Polymorphic functions on Polymorphic lists

Let’s practice

Example (Length of a list)
Ala Lisp: OCaml pre-defined lists:

let rec length (1:'a 1list):int let rec length (1:’a list)iint

match 1 with match 1 with

|Nil —0 [[]—0
| cons (_,1) =+ 1+ length 1 | 51— 1+ lengthl

» isEmpty: returns true if the argument list is empty

» append: appends two lists together

» reverse: reverse the elements of a list

» separate: inserts a separator between two elements of a list

Note: be careful with the types

34

Outline

Higher-Order

Higher-order

Some motivation

Consider two simple functions returning the maximum of two integers:

let max2_vl (a:int) (b:int):int let max2_v2 (a:int) (b:int):int

ifa>=bthena ifa<=bthenb
elseb else a

34

Higher-order

Some motivation

Consider two simple functions returning the maximum of two integers:

let max2_vl (a:int) (b:int):int let max2_v2 (a:int) (b:int):int

ifa>=bthena ifa<=bthenb
elseb else a

Several questions:
» How to test whether those functions are correct?

» How to test whether those functions return the same values for the same
input values?

Higher-order

Some motivation

Consider two simple functions returning the maximum of two integers:

let max2_vl (a:int) (b:int):int let max2_v2 (a:int) (b:int):int

ifa>=bthena ifa<=bthenb
elseb else a

Several questions:
» How to test whether those functions are correct?

» How to test whether those functions return the same values for the same
input values?

Introduction to higher-order

In OCaml and functional programming, functions is the basic tool:
» to “slice” a program into smaller pieces
» to produce results

Functions are first-class citizens: they are values (e.g., used in lists,. .

A function can also be a parameter or a result of a function

Example (Returning an affine function)
let affine ab = (fun x — a* x + b)

Several benefits

)

34

Higher-order functions

Some vocabulary

A programming language is a higher-order language if it allows to pass
functions as parameters and functions can return a function as a result

The C programming language allows to pass functions as
parameters but does not allow to return a function as a result

10/34

Higher-order functions

Some vocabulary

A programming language is a higher-order language if it allows to pass
functions as parameters and functions can return a function as a result

The C programming language allows to pass functions as
parameters but does not allow to return a function as a result

A function is said to be a higher-order function or a functional, if it does at
least one of the two things:

» take at least one function as a parameter
» return a function as a result

Non higher-order functions are said to be first-order functions

10/34

Higher-order functions

Benefits and What you should learn

Conciseness

Some form of expressiveness

At the end of the day, you should know:
» that higher-functions exist
» the associated "vocabulary"”
» know how and when to use it

We will demonstrate and experiment those features through examples. ..

11/34

A tour of some higher-order functions

Numerical functions

Example (Slope of a function in 0)
Let f be a function defined in 0 (with real values):

f(h) — 1(0)

(with h small)
h

‘ DEMO: Slope in 0

Example (Derivating a (derivable) function f)
We approximate f'(x) (value of the derivative function in x) by:

"("L})*"(X) (with h small)

‘ DEMO: Derivative

12/34

A tour of some higher-order functions

Numerical functions

Reminders:
» A zero of a function fisan x s.t. f(x) =0

» Theorem of intermediate values:
Let f be a continuous function, a and b two real numbers, if f(a) and f(b)
are of opposite signs, then there is a zero in the interval [a, b]

» \/ais the positive zero of the function x — x2 — a
»Va>0:0<+a< 2

13/34

A tour of some higher-order functions

Numerical functions

Reminders:
» A zero of a function fisan x s.t. f(x) =0

» Theorem of intermediate values:
Let f be a continuous function, a and b two real numbers, if f(a) and f(b)
are of opposite signs, then there is a zero in the interval [a, b]

» \/ais the positive zero of the function x — x — a
»Va>0:0<+a< 2

» Define a function sign indicating whether a real is positive or not

» Deduce a function zero that returns the zero of a function, up to some
given epsilon, given two reals s.t. there is a zero between those reals

» Deduce a function to approximate the square root of a float

13/34

A tour of some higher-order functions

Applying twice a function

Consider the two functions double and square:
> let double (x:int):int = 2%x

> let square (x!int)iint = x*x

14/34

A tour of some higher-order functions

Applying twice a function

Consider the two functions double and square:
> let double (x:int):int = 2%x

> let square (x!int)iint = x*x

How can we define quad and power4 reusing the previous function?
» let quad (x:int):int = double (double x)

» let square (x!int):int = square (square x)

14/34

A tour of some higher-order functions

Applying twice a function

Consider the two functions double and square:
> let double (x:int):int = 2%x

> let square (x!int)iint = x*x

How can we define quad and power4 reusing the previous function?
» let quad (x:int):int = double (double x)

» let square (x!int):int = square (square x)
Can we generalize?... Yes, we can:
let applyTwice (f:int — int) (x:int):int = £ (f x)
» let quad (x:int):int = applyTwice double x
» let powerd (x:int):int = applyTwice square x
or using anonymous functions:

» let quad (x:int):int = applyTwice (fun (x:int) — 2% x) x
» let powerd (x:int):int = applyTwice (fun (x:int) — x * x) x

14/34

A tour of some higher-order functions

Composing functions

Function composition:

f c—D
g : A—B
f

go C—B ifDCA

Let us simplify and take D = A, hence gof: C -+ A -2+ B

15/34

A tour of some higher-order functions

Composing functions

Function composition:
f c—D
g : A—B
f

go C—B ifDCA

Let us simplify and take D = A, hence gof: C -+ A-%3 B

» Specify the function compose that composes two functions
(beware of types)

» Implement the function compose

In OCaml:
if £ is a function of type t1 — t2 and g a function of type t2 — t 3 then

» compose g £ will be of type t1— 3
» compose Will be of type (t2 — t3) — (t1 — t2) = (t1 — t3)

compose

15/34

A tour of some higher-order functions

n-th term of a series and generalized composition

Consider a series defined as follows:

U = a
Upn = f(Up=1),n>1

The n-th term uy is f(up—1) = f(f(un—2)) = f(f(f(... () ...

16/34

A tour of some higher-order functions

n-th term of a series and generalized composition

Consider a series defined as follows:

U = a
Upn = f(Up=1),n>1

The n-th term uy, is f(up—1) = f(f(Un—2)) = F(f(f(... (W) ...)))

Define a function nthterm that computes the n-th term of a series defined
as above using a function f and some n

Define a function iterate that computes the function which is the n-th
composition of a function, given some n

16/34

A tour of some higher-order functions

Generalizing the sum of the n first integers

Sum of nfirst integers:
1+2+...+(n—-1)+n=(1+2+...+(n—1))+n

Implemented as:
let rec sum_integers (n:int) =
if n=0 then 0 else sum_integers (n—1) +n

17/34

A tour of some higher-order functions

Generalizing the sum of the n first integers

Sum of nfirst integers:
1+2+...+(n—-1)+n=(1+2+...+(n—1))+n

Implemented as:
let rec sum_integers (n:int) =

if n=0 then 0 else sum_integers (n—1) +n
The sum of squares is similarly:

P22 (-1 =P +22 4+ (n—1)) + 1

Implemented as:
let rec sum_squares (n:int) =
if n=0 then 0 else sum_squares (n—1) + (nx*n)

17/34

A tour of some higher-order functions

Generalizing the sum of the n first integers

Sum of nfirst integers:
1+2+...+(n—-1)+n=(1+2+...+(n—1))+n

Implemented as:
let rec sum_integers (n:int) =
if n=0 then 0 else sum_integers (n—1) +n

The sum of squares is similarly:
P22 (-1 =P +22 4+ (n—1)) + 1

Implemented as:
let rec sum_squares (n:int) =
if n=0 then 0 else sum_squares (n—1) + (nxn)

» Define a function sigma that computes the sum of the images through
some function for the first n integers

» Give an alternative implementation of sum_integers and
sum_squares UsSing sigma

A tour of some higher-order functions

Lists: applying a function to all elements in a list - preliminary

Another representation of the list 1 =[a_1;a_2;...; a_n]:

A\

a_2

.

a_n [

Graphic representation from Pierre Wiels and Xavier Leroy

18/34

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Given:
> alistoftype’a list
» afunction of type’a — b

A
/

a_2

19/34

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Given:
> alistoftype’a list
» afunction of type’a — b

Remark
» Application of £ does not depend on the position of the element
» map returns a list
» map can change the type of the list

Typing
If 1isoftypetl 1list and £ is of type t1—t2
thenmap £ 1isof type t2 1list

19/34

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Define a function map such that:

» given a list and a function £ on the elements of that list,

» returns the list where £ has been applied to all elements of that list

/N
/- e

A\
/

20/34

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Example (Vectorize)

» Specification:
» Profile: vectorize: Seq(Elt) — Vec(Seq(Elt)), where Vec is the set of lists of
one element
» Semantics:
vectorize [el;...;en] =[[el];...;[en]]

» Implementation:

let vectorize =my_map (fun e — [e])

Example (Concatenate to each)

» Specification:
> Profile: Seq(Elt) * Séq(Seq(Elt)) — Seq(Vec(Elt))
> Semantics:
concatenate_to_each (1, [vl;...;vn] =[1@vl;..;1Qvn]

» Implementation:

let concatenate_to_each
= fun (1,seqv) = my_map (fun x — 1@x) seqv

21/34

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Define the following functions:
» toSquare: raises all elements of a list of int to their square
» toAscii: returns the ASCII code of a list of char

» toUpperCase: returns a list of char where all elements have been put
to uppercase

Define the function powerset that computes the set of subsets of a set
represented by a list

22/34

A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_right - some intuition first

Example (Sum of the elements of a list)
let recsuml =
match 1 with
[1]—0

| eltiiremainder — elt + (sum remainder)

Example (Product of the elements of a list)
let rec product 1 =
match 1 with
[1]—1
| elt:iremainder — elt * (product remainder)

Example (Paste the string of a list)
let rec concatenate 1 =
match 1 with
[] —mon
| elt:iremainder — elt * (concatenate remainder)

Remark Notice that the only elements that change are:
» the “base case”, i.e., what the function should return on the empty list
» “how we combine the current element with the result of the recursive call
O

23/34

A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_right
If we place the operator in prefix position, we have:
» sum[al;a2;..;an] =+ al (+ a2 (... (+ an 0)...))
» product [al;a2;...;an] =% al (* a2 (... (* an 0)...))
» concatenate [al;a2;..;an]="al (*a2 (... (" an 0)...))

24/34

A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_right
If we place the operator in prefix position, we have:
» sum[al;a2;..;an] =+ al (+ a2 (... (+ an 0)...))
» product [al;a2;...;an] =% al (* a2 (... (* an 0)...))
» concatenate [al;a2;..;an]="al (*a2 (... (" an 0)...))
More generally, given:
» foftype’a —-"b — b,
» 1 oftype’a list, and
» some initial value b of type ’ b

/ \ a_1l f
a_l o
/ fold_right £1b /)
>

" A /\

— resultis of type ’ a

24/34

A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_right

Given
» foftype’a —'b — b, and
» 1 =[al;...;an] of type’ a list,
define a function fold_right s.t.

fold_right f[al;...;an] b = £ (al (... £ (an b)))

» Re-write the previously defined functions, sum, product,
concatenate using fold_right

» Define a function that determines whether the number of elements of a
list is a multiple of 3 without using the function returning the length of a
list

34

A tour of some higher-order functions
A small case-study with fold_right

The purpose is to write a test suite function
We have seen examples of test cases
A test suite is a series of test cases s.t.:

» each test case is applied in order
» for a test suite to succeed, all its test cases must succeed

Questions:

» Define a function test_suite that checks whether two functions £ and
g returns the same values on a list of inputs values. Each element of the
list is an input to the two functions.

» Here are two simple functions:

> let plusl = fun x — x+1
> let plusldummy = fun x — if (xmod2=0) thenx -2+ 3
else 2*x
Find 2 lists of inputs, so that the application of the function test_suite

1. finds the bug
2. does not find the bug

26/34

A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_left

More generally, given:
» foftype’a — b=’ a,
» loftype’ b list, and
» some initial value a of type ’ a:

f

/ \ b_n f
b_1 i
/ : fold left fal / \
T b_2 f

VAN VAN

b_n []
— result is of type ’ a

27/34

A tour of some higher-order functions

Lists: some function parameterized by a predicate

A predicate is a function that returns a Boolean

Recall the function that removes not even integers from a list of integers:

let rec remove_odd (1l:int list) =
match 1 with
[1—11
| elt:iremainder —
ifeltmod2=0
then elt:(remove_odd remainder)
else (remove_odd remainder)

28/34

A tour of some higher-order functions

Lists: some function parameterized by a predicate

Define a function £i1ter that filters the elements of a list according to some
given predicate p

» Define a function forall that checks whether all the elements of a list
satisfy a given predicate p

» Define a function exists that checks whether at least one element of a
list satisfy a given predicate p

29/34

A tour of some higher-order functions

Some more exercises

» Redefine the function test_suite using the function forall

» Redefine map using fold_left
» Redefine map using fold_right

Define the functions minimum and maximum of a list using fold_left and
fold_right. The function can be written with one line of code

30/34

Outline

Currying

About Currying

A function with n parameter x1,...,xn is actually a function that takes x1 as a
parameter and returns a function that takes x2,...,xn as parameters

31/34

About Currying

A function with n parameter x1,...,xn is actually a function that takes x1 as a
parameter and returns a function that takes x2,...,xn as parameters

The application

f x1 X2 ... xn

is actually a series of applications
f (... (£ x1) x2) ...) xn)

Applying a function with n parameters with (strictly) less than n parameters
The result of a partial application remains a function

Typing:
If
» fisoftypetl - t2 — ... > tn — t, and
» xiisoftype tiforie[1,j]C[1,n]
Then £ x1 %2 ... xjisof type t(j+1) - ... > tn —> ¢t

31/34

About Currying

Some example

Example (Apply twice)
Back to the function applyTwice:

let applyTwice (f:int — int) (x:int):int
=f (f x)

Applying applyTwice with only one argument:
applyTwice (fun x — x +4)
is equal to the function

funx - x+8

DEMO: applyTwice and its testing

32/34

Currying has some advantages

Suppose we want a function taking a € Aand b € B and returning c € C
Without currying: : With currying:
fitA > tB— tC
fitA % tB — tC
f takes 2 arguments

fabisoftype tcC
faisoftype tB — tC

£ takes 1 argument: a pair
f (a,b) is of type tC

Lessons learned

» Currying allows some flexibility
» Allows to specialize functions

When applying curried functions, it can be harder to detect that we
have forgot a parameter

33/34

Conclusion / Summary

Polymorphism

» general types
» "type parameterization”

Higher-Order

» "taking a function as a parameter or returning a function"
> improve conciseness, expressiveness, quality,. . .

Currying

» partial application of a function
» function specialization
» define your function so it can be curried

34/34

	Polymorphism
	Higher-Order
	Currying

