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In the previous episodes of INF 121

I Basic Types: Booleans, Integers, Floats, Chars, String
I if ... then ... else ... conditional structure
I identifiers (local and global)
I defining and using functions
I Advanced types: synonym, enumerated, product, sum
I Pattern matching on simple and advanced expressions
I Recursion

I recursive functions and their termination
I recursive types and how to use them (in (recursive) functions + in pattern

matching)

I List (recursive type) with Cons/Nil and OCaml’s pre-defined notations
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Motivating polymorphism on examples
Limitations of Functions

About the identity function:

I Identity on int:
let id (x:int):int = x val id : int→ int = <fun>

I Identity on float:
let id (x:float):float = x val id : float→ float = <fun>

I Identity on char
let id (x:char):char = x val id : char→ char = <fun>

Disadvantages:
I 1 function per type needing the identity function
I Unique/Different names needed if these functions should “live” together
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Motivating polymorphism on examples
Limitations of Functions on list

Compute the length of a list:
I of int:

let rec length_int (l: int list):int=
match l with

| [ ]→ 0
| _::l→ 1+ length_int l

I on char:

let rec length_char (l: char list):int=
match l with

| [ ]→ 0
| _::l→ 1+ length_char l

I . . .

Remark The body of these functions is not specific to char nor int �

→ we need lists that are not bound to a type
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Motivating polymorphism on examples
Limitations of (current) lists

Several sorts of lists, à la Lisp:
I type listofint = Nil | Cons int ∗ listofint

and then Cons (2, Cons (9,Nil))
I type listofchar = Nil | Cons char ∗ listofchar

and then Cons (’t’, Cons (’v’,Nil))

Several sorts of lists, even with OCaml shorter notations:
I list of int: [1;2] (=1::2::[ ]) of type int list

I list of char: [’e’; ’n’] (=’ b ’:: ’ n ’::[ ]) of type char list

I list of string: [‘‘toto’’;‘‘titi’’] (=‘‘toto’’::‘‘titi’’::[ ]) of type
string list
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Back on the examples - introducing polymorphism

Let’s come back on the (various) identity functions

What if we omit type?
let id x = x val id : ’ a→ ’ a = <fun>

→ type inference: OCaml computes the most general type
→ polymorphic identity: the id on any type (α or ’ a)

“id is a polymorphic function” that can be applied to any value

We can specifically indicate that the function can take any type:

let id (x : ’ a): ’ a = x
equivalently let id (x : ’ b): ’ b = x
equivalently let id (x : ’ toto): ’ toto = x
. . . . . .
↪→ the type returned by OCaml is ’ a→ ’ a

(equivalently α→α)

DEMO: Polymorphic identity
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Polymorphic lists

We can define lists that are parameterized by some type (à la Lisp)

type ’t llist = Nil | Cons of ’t ∗ ’t llist

’t is a type parameter

OCaml pre-defined lists are already parameterized by some type:
I type of [ ] is ’ a list (equivalently α list)
I type of :: is ’ a→ ’ a list→ ’ a list

(equivalently α→α list→α list)

Remark Still, the elements should have the same type �

Example

I Cons (2,Cons (3,Cons (4,Nil)))
I Cons (’r’,Cons (’d’,Cons (’w’,Nil)))
I Cons ( (fun x→ x), Cons ((fun x→ 3∗x+2), Nil) )

DEMO: Polymorphic lists
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Polymorphic functions on Polymorphic lists
Let’s practice

Example (Length of a list)
À la Lisp:

let rec length (l: ’ a llist):int
=

match l with
| Nil→ 0
| Cons (_, l)→ 1 + length l

OCaml pre-defined lists:

let rec length (l: ’ a list):int
=

match l with
| []→ 0
| _::l→ 1+ length l

Exercise: implement some functions on polymorphic lists

I isEmpty: returns true if the argument list is empty
I append: appends two lists together
I reverse: reverse the elements of a list
I separate: inserts a separator between two elements of a list

Note: be careful with the types
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Higher-order
Some motivation

Consider two simple functions returning the maximum of two integers:

let max2_v1 (a:int) (b:int):int
=
if a >= b then a
else b

let max2_v2 (a:int) (b:int):int
=
if a <= b then b
else a

Several questions:
I How to test whether those functions are correct?
I How to test whether those functions return the same values for the same

input values?

DEMO: Higher-order can provide elegant testing solutions
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Introduction to higher-order

In OCaml and functional programming, functions is the basic tool:
I to “slice” a program into smaller pieces
I to produce results

Functions are first-class citizens: they are values (e.g., used in lists,. . . )

A function can also be a parameter or a result of a function

Example (Returning an affine function)
let affine a b = (fun x→ a∗ x + b)

Several benefits
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Higher-order functions
Some vocabulary

Definition (Higher-Order language)

A programming language is a higher-order language if it allows to pass
functions as parameters and functions can return a function as a result

Remark The C programming language allows to pass functions as
parameters but does not allow to return a function as a result �

Definition (Higher-order function)

A function is said to be a higher-order function or a functional, if it does at
least one of the two things:

I take at least one function as a parameter
I return a function as a result

Remark Non higher-order functions are said to be first-order functions �
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Higher-order functions
Benefits and What you should learn

Conciseness

Some form of expressiveness

At the end of the day, you should know:
I that higher-functions exist
I the associated "vocabulary"
I know how and when to use it

We will demonstrate and experiment those features through examples. . .
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A tour of some higher-order functions
Numerical functions

Example (Slope of a function in 0)
Let f be a function defined in 0 (with real values):

f (h)− f (0)
h

(with h small)

DEMO: Slope in 0

Example (Derivating a (derivable) function f )
We approximate f ′(x) (value of the derivative function in x) by:

f (x + h)− f (x)
h

(with h small)

DEMO: Derivative
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A tour of some higher-order functions
Numerical functions

Reminders:
I A zero of a function f is an x s.t. f (x) = 0
I Theorem of intermediate values:

Let f be a continuous function, a and b two real numbers, if f (a) and f (b)
are of opposite signs, then there is a zero in the interval [a, b]

I
√

a is the positive zero of the function x 7→ x2 − a
I ∀a ≥ 0 : 0 ≤

√
a ≤ 1+a

2

Exercise: zero of a continuous function using dichotomy

I Define a function sign indicating whether a real is positive or not
I Deduce a function zero that returns the zero of a function, up to some

given epsilon, given two reals s.t. there is a zero between those reals
I Deduce a function to approximate the square root of a float

13 / 34
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A tour of some higher-order functions
Applying twice a function

Consider the two functions double and square:
I let double (x:int):int = 2∗x
I let square (x:int):int = x∗x

How can we define quad and power4 reusing the previous function?
I let quad (x:int):int = double (double x)
I let square (x:int):int = square (square x)

Can we generalize?. . . Yes, we can:

let applyTwice (f:int→ int) (x:int):int = f (f x)

I let quad (x:int):int = applyTwice double x

I let power4 (x:int):int = applyTwice square x

or using anonymous functions:
I let quad (x:int):int = applyTwice (fun (x:int)→ 2∗ x) x
I let power4 (x:int):int = applyTwice (fun (x:int)→ x ∗ x) x
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A tour of some higher-order functions
Composing functions

Function composition:

f : C −→ D
g : A −→ B

g ◦ f : C −→ B if D ⊆ A

Let us simplify and take D = A, hence g ◦ f : C f−→ A
g−→ B

Exercise: Defining function composition in OCaml

I Specify the function compose that composes two functions
(beware of types)

I Implement the function compose

In OCaml:
if f is a function of type t1→ t2 and g a function of type t2→ t3 then

I compose g f will be of type t1→ t3

I compose will be of type (t2→ t3)→ (t1→ t2)→ (t1→ t3)

DEMO: Implementation of compose
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A tour of some higher-order functions
n-th term of a series and generalized composition

Consider a series defined as follows:

u0 = a
un = f (un−1), n ≥ 1

The n-th term un is f (un−1) = f (f (un−2)) = f (f (f (. . . (u0) . . .)))

Exercise: n-th term of a series
Define a function nthterm that computes the n-th term of a series defined
as above using a function f and some n

Exercise: n-th iteration of a function
Define a function iterate that computes the function which is the n-th
composition of a function, given some n

16 / 34
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A tour of some higher-order functions
Generalizing the sum of the n first integers

Sum of n first integers:

1 + 2 + . . .+ (n − 1) + n =
(
1 + 2 + . . .+ (n − 1)

)
+ n

Implemented as:
let rec sum_integers (n:int) =
if n=0 then 0 else sum_integers (n−1) + n

The sum of squares is similarly:

12 + 22 + . . .+ (n − 1)2 + n2 =
(
12 + 22 + . . .+ (n − 1)2)+ n2

Implemented as:
let rec sum_squares (n:int) =
if n=0 then 0 else sum_squares (n−1) + (n∗n)

Sum of the integers through a function - generalization

I Define a function sigma that computes the sum of the images through
some function for the first n integers

I Give an alternative implementation of sum_integers and
sum_squares using sigma

17 / 34
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A tour of some higher-order functions
Lists: applying a function to all elements in a list - preliminary

Another representation of the list l = [a_1; a_2; ...; a_n]:

::

a_1 ::

a_2 ::

a_n [ ]

Graphic representation from Pierre Wiels and Xavier Leroy
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A tour of some higher-order functions
Lists: applying a function on all elements on a list - function map

Given:
I a list of type ’ a list
I a function of type ’ a→ ’ b

::

a_1 ::

a_2 ::

a_n [ ]

map f l
----->

::

f a_1 ::

f a_2 ::

f a_n [ ]

Remark
I Application of f does not depend on the position of the element
I map returns a list
I map can change the type of the list

�Typing
If l is of type t1 list and f is of type t1→t2

then map f l is of type t2 list
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A tour of some higher-order functions
Lists: applying a function on all elements on a list - function map

Exercise: function map

Define a function map such that:
I given a list and a function f on the elements of that list,
I returns the list where f has been applied to all elements of that list

::

a_1 ::

a_2 ::

a_n [ ]

map f l
----->

::

f a_1 ::

f a_2 ::

f a_n [ ]
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A tour of some higher-order functions
Lists: applying a function on all elements on a list - function map

Example (Vectorize)
I Specification:

I Profile: vectorize: Seq(Elt) → Vec( Seq(Elt) ), where Vec is the set of lists of
one element

I Semantics:
vectorize [e1;...;en] = [ [e1] ; ... ; [en] ]

I Implementation:

let vectorize = my_map (fun e→ [e])

Example (Concatenate to each)
I Specification:

I Profile: Seq(Elt) * Séq( Seq(Elt) ) → Seq( Vec(Elt) )
I Semantics:
concatenate_to_each (l, [v1; ...; vn] = [ l@v1 ; ... ; l@vn ]

I Implementation:

let concatenate_to_each
= fun (l,seqv)→ my_map (fun x→ l@x) seqv
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A tour of some higher-order functions
Lists: applying a function on all elements on a list - function map

Exercise: using the function map for converting lists

Define the following functions:
I toSquare: raises all elements of a list of int to their square
I toAscii: returns the ASCII code of a list of char
I toUpperCase: returns a list of char where all elements have been put

to uppercase

Exercise: Powerset
Define the function powerset that computes the set of subsets of a set
represented by a list
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A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_right - some intuition first

Example (Sum of the elements of a list)
let rec sum l =

match l with
[ ]→ 0
| elt::remainder→ elt + (sum remainder)

Example (Product of the elements of a list)
let rec product l =

match l with
[ ]→ 1
| elt::remainder→ elt ∗ (product remainder)

Example (Paste the string of a list)
let rec concatenate l =

match l with
[ ]→ " "
| elt::remainder→ elt ^ (concatenate remainder)

Remark Notice that the only elements that change are:
I the “base case”, i.e., what the function should return on the empty list
I “how we combine the current element with the result of the recursive call

�
23 / 34



A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_right

If we place the operator in prefix position, we have:
I sum [a1;a2;...;an] = + a1 (+ a2 (... (+ an 0)...))
I product [a1;a2;...;an] = ∗ a1 ( ∗ a2 (... ( ∗ an 0)...))
I concatenate [a1;a2;...;an] = ^ a1 (^ a2 (... (^ an 0)...))

More generally, given:
I f of type ’ a→ ’ b→ ’ b,
I l of type ’ a list, and
I some initial value b of type ’ b

::

a_1 ::

a_2 ::

a_n [ ]

fold_right f l b
- - - - ->

f

a_1 f

a_2 f

a_n b_0

→ result is of type ’ a

24 / 34
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A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_right

Exercise: writing fold_right

Given
I f of type ’ a→ ’ b→ ’ b, and
I l = [a1;...;an] of type ’ a list,

define a function fold_right s.t.

fold_right f [a1;...;an] b = f (a1 (... f (an b)))

Exercise: using fold_right

I Re-write the previously defined functions, sum, product,
concatenate using fold_right

I Define a function that determines whether the number of elements of a
list is a multiple of 3 without using the function returning the length of a
list
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A tour of some higher-order functions
A small case-study with fold_right

Exercise: tasting testing

The purpose is to write a test suite function
We have seen examples of test cases
A test suite is a series of test cases s.t.:

I each test case is applied in order
I for a test suite to succeed, all its test cases must succeed

Questions:
I Define a function test_suite that checks whether two functions f and
g returns the same values on a list of inputs values. Each element of the
list is an input to the two functions.

I Here are two simple functions:
I let plus1 = fun x→ x+1
I let plus1dummy = fun x→ if (x mod 2 = 0) then x −2 + 3
else 2∗x

Find 2 lists of inputs, so that the application of the function test_suite
1. finds the bug
2. does not find the bug
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A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_left

More generally, given:
I f of type ’ a→ ’ b→ ’ a,
I l of type ’ b list, and
I some initial value a of type ’ a:

::

b_1 ::

b_2 ::

b_n [ ]

fold_left f a l
---->

f

b_n f

b_2 f

b_1 a

→ result is of type ’ a
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A tour of some higher-order functions
Lists: some function parameterized by a predicate

A predicate is a function that returns a Boolean

Recall the function that removes not even integers from a list of integers:

let rec remove_odd (l:int list) =
match l with

[ ]→ [ ]
| elt::remainder→

if elt mod 2 = 0
then elt::(remove_odd remainder)

else (remove_odd remainder)
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A tour of some higher-order functions
Lists: some function parameterized by a predicate

Exercise: Filtering according to a predicate

Define a function filter that filters the elements of a list according to some
given predicate p

Exercise: Checking a predicate on the elements of a list

I Define a function forall that checks whether all the elements of a list
satisfy a given predicate p

I Define a function exists that checks whether at least one element of a
list satisfy a given predicate p
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A tour of some higher-order functions
Some more exercises

Exercise: back to testing

I Redefine the function test_suite using the function forall

Exercise: Map with fold

I Redefine map using fold_left

I Redefine map using fold_right

Exercise: minimum and maximum with one line of code
Define the functions minimum and maximum of a list using fold_left and
fold_right. The function can be written with one line of code
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About Currying

A function with n parameter x1,...,xn is actually a function that takes x1 as a
parameter and returns a function that takes x2,...,xn as parameters

The application
f x1 x2 ... xn

is actually a series of applications
f (... (f x1) x2) ... ) xn)

Definition: Partial application

Applying a function with n parameters with (strictly) less than n parameters
The result of a partial application remains a function

Typing:
If

I f is of type t1→ t2→ ...→ tn→ t, and
I xi is of type ti for i ∈ [1, j] ⊆ [1, n]

Then f x1 x2 ... xj is of type t(j+1)→ ...→ tn→ t
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About Currying
Some example

Example (Apply twice)
Back to the function applyTwice:

let applyTwice (f:int→ int) (x:int):int
= f (f x)

Applying applyTwice with only one argument:

applyTwice (fun x→ x +4)

is equal to the function

fun x→ x + 8

DEMO: applyTwice and its testing
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Currying has some advantages

Suppose we want a function taking a ∈ A and b ∈ B and returning c ∈ C

Without currying: ...
With currying:

f: tA ∗ tB→ tC

f takes 1 argument: a pair
f (a,b) is of type tC

...

...

...

f: tA→ tB→ tC

f takes 2 arguments
f a b is of type tC
f a is of type tB→ tC

DEMO: 2 definitions of integer addition & the predefined (+) in OCaml

Lessons learned
I Currying allows some flexibility
I Allows to specialize functions

Remark When applying curried functions, it can be harder to detect that we
have forgot a parameter �
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Conclusion / Summary

Polymorphism

I general types
I "type parameterization"

Higher-Order

I "taking a function as a parameter or returning a function"
I improve conciseness, expressiveness, quality,. . .

Currying

I partial application of a function
I function specialization
I define your function so it can be curried
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