

INF121:

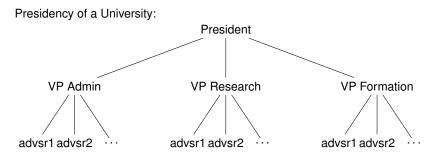
Functional Algorithmic and Programming

Lecture 7: Tree-based structures

Academic Year 2011 - 2012

About Trees

Some motivation and intuition



Remark

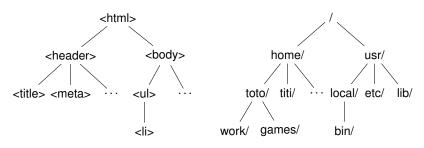
- "root" at the topmost level
- nodes with/without "subtrees"
- ▶ Hierarchical structure
- Implicit order or hierarchy...or not
- possible repetition

About Trees

Some motivation and intuition

Widely used in computer science mostly because of its notion of hierarchy: (contrarily to lists)

- sorting
- storing "efficiently"
 (e.g., a file system where files are organized in directories)
- compiling: programs are represented with trees
- structured documents, e.g., a web page
- modelling



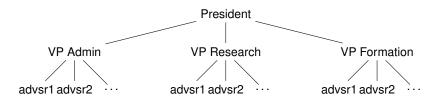
Defining trees The definition

Definition (Tree)

A tree is a hierarchical recursive data structure which is either:

- empty
- a node containing a data and (sub) trees

Stores together data of the same type (similarly to list)



Defining trees

Some vocabulary

Vocabulary

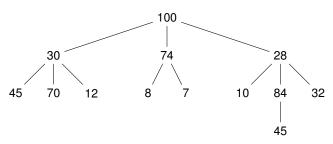
- The topmost node is called the root
- ► The data associated to a node is called its label / content
- ► The sub trees of a node are called the children
- The node directly containing subtrees is called the father of the subtrees
- ► The node containing subtrees is called an ancestor of the subtrees
- A node with an empty tree is called a leaf or a terminal node
- A branch of a tree is the list of nodes corresponding to a path from the root to a leaf
- level of a node: length of the branch to this node
- depth of a tree: the maximal level of the nodes in the tree
- size of a tree: the number of nodes in the tree

Remark Constraints can be put on, e.g.,

- the (maximal) number of children a node can have (e.g., binary trees: 2 children per node)
- how labels are ordered in the tree

An example

Example (A tree)



- ▶ root: 100
- ▶ labels: 100, 30, 64, 28, 45, 70, 12, 8, 7, 10, 84, 32
- ▶ leaves: 45, 70, 12, 8, 7, 10, 84, 32
- children of 30 are 45, 70, 12
- ▶ 100 is the direct father of 30
- ▶ 100 is at level 0, 7 is at level 2
- the depth of the tree is 3
- ► [100;30;12] is a path

Outline

Binary trees

Binary Search Trees

Definition (Binary Tree

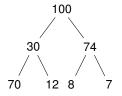
A tree is a binary tree if each node has at most two children (possibly empty) Mathematically:

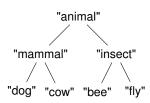
$$\mathit{Bt}(\mathit{Elt}) = \{\mathit{EmptyT}\} \cup \{\mathit{Node}(\mathit{tL}, e, \mathit{tR}) \mid e \in \mathit{Elt} \land \mathit{tL}, \mathit{tR} \in \mathit{Bt}(\mathit{Elt})\}$$

Example (Binary trees of integers)

$$\mathit{Bt}(\mathbb{N}) = \{\mathit{EmptyT}\} \cup \{\mathit{Node}(\mathit{tL}, e, \mathit{tR}) \mid e \in \mathbb{N} \land \mathit{tL}, \mathit{tR} \in \mathit{Bt}(\mathbb{N})\}$$

Example (Binary tree)



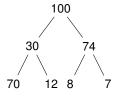


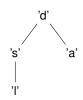
Binary trees Vocabulary

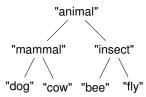
Vocabulary

- ► The first (resp. second) child is also called the left-hand (resp. right-hand) subtree
- ▶ A binary tree *t* is complete if size(t) = $2^{\text{depth}(t)} 1$

Example (Binary tree)







Binary trees of integers

```
type binary_tree =
    | Empty
    | Node of int * binary_tree * binary_tree

type binary_tree =
    | Empty
    | Node of binary_tree * int * binary_tree

type binary_tree =
    | Empty
    | Node of binary_tree * binary_tree * int
```

Remark

- Three equivalent definitions
- ▶ The type binary_tree has two constructors
- ▶ The constructor EmptyT (empty tree) is a constant
- ▶ The constructor Node is doubly recursive

Binary trees Examples

Example (Defining a tree in OCaml)

Example (Another tree)

```
Node(
100,
100
Node(30,
Node(70,EmptyT,EmptyT),
Node(12,EmptyT,EmptyT)
),
Node(74,
Node(8,EmptyT,EmptyT),
Node(7,EmptyT,EmptyT),
Node(7,EmptyT,EmptyT)
)
```

let bt2 =

Some (classical) functions on trees

Example (Depth)

The maximal level of the nodes

```
let rec depth (t:binary_tree):int= match t with | \  EmptyT \rightarrow 0 \\ | \  Node (\_, t1, t2) \rightarrow 1 + max (depth t1) (depth t2)
```

Exercise

Define the two following functions

- sum: returns the sum of the elements of a tree
- maximum returns the maximal integer in the tree. Warning this function should not be called on an empty tree

Binary trees

Let's parameterise binary trees

We can parameterise binary trees by a type (polymorphism)

```
\label{eq:continuous_problem} \begin{split} & \texttt{type} \ \alpha \ \texttt{binary\_tree} = \\ & | \ \texttt{EmptyT} \\ & | \ \texttt{Node} \ \texttt{of} \ \alpha * \alpha \ \texttt{binary\_tree} * \alpha \ \texttt{binary\_tree} \end{split}
```

Many possible sorts of binary trees: int binary_tree, char binary_tree, string binary_tree,...

Remark The element of type α can be placed equivalently in the middle or on the right

DEMO: Defining some binary trees

Polymorphic Binary trees

Some functions

```
Example (Belongs to)
Is an element of type \alpha in an \alpha binary_tree?

let rec belongsto (elt:\alpha) (t:\alpha bintree):bool =
```

```
match t with | \, \texttt{Empty} \to \texttt{false} \\ | \, \texttt{Node} \, \big( \texttt{e,tl,tr} \big) \to \big( \texttt{e=elt} \big) \, || \, \texttt{belongsto} \, \texttt{elt} \, \texttt{tl} \, || \, \texttt{belongsto} \, \texttt{elt} \, \texttt{tr}
```

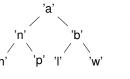
Example (The list of labels of a tree) Given an α binary tree, returns the α list of labels

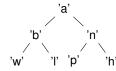
```
let rec labels (t:\alpha bintree):\alpha list=
match t with

| Empty \rightarrow []
| Node (elt,tl,tr) \rightarrow (labels tl)@elt::(labels tr)
```

Exercise: Define the following functions

- size: returns the size of the tree (the number of nodes)
- lacktriangle leaves: given an lpha bintree returns the lpha list of leaves of this tree
- ightharpoonup maptree: applies a given function to all elements of an α bintree
- lacktriangledown mirror: returns the mirror image of an lpha bintree





Browsing a binary tree

Given a binary search tree, several functions are defined by "browsing the tree"

When encountering a Node (elt, lst, rst), there are several possibilities according to the "moment" when elt is treated:

- ▶ treat elt, then browse lst, then browse rst: prefix browsing
- ▶ treat lst, then browse elt, then browse rst: infix browsing
- browse lst, then browse rst, then treat elt: suffix browsing

Iterators on binary tree

Iterator on a binary tree: fold_left_right_root: applies a function f

- ▶ to the root, and
- the results of left subtrees and right subtrees

```
let rec fold_lrr (f:\alpha \to \beta \to \beta \to \beta) (acc:\beta) (t:\alpha bintree):\beta= match t with

Empty \to acc

Node (elt, l, r) \to
let rl = fold_lrr f acc l

and rr = fold_lrr f acc r

in f elt rl rr
```

Using iterators

Defining functions using iterators

Using the function fold_lrr, redefine the following functions:

- ▶ size
- ▶ depth
- ▶ mirror

Pathes in a tree

Exercise: Pathes in a binary tree: function

The purpose is to define a function that computes maximal pathes in a tree:

- ► How can we represent a path and a set of pathes?
- Define a function add_to_each that adds an element as the head to each path in a set of pathes
- ▶ Using the previously defined function define the function pathes

Binary trees

Some properties and how to prove them

Properties of size and depth

- ▶ $depth(t) \leq size(t)$
- ▶ $size(t) \le 2^{depth(t)-1}$

How to prove them?

Structural induction to prove some property P

Consider $Bt(Elt) = \{EmptyT\} \cup \{Node(tL, e, tR) \mid e \in Elt \land tL, tR \in Bt(Elt)\}$ To show that $\forall t \in Bt(Elt) : P(t)$

- ▶ prove P(Et)
- prove

$$\forall tL, tR \in Bt(Elt) : P(tL) \land P(tR) \Rightarrow (\forall e \in Elt : P(Node(tL, e, tR)))$$

Exercise: some proofs

Prove the above properties using structural induction

Outline

Binary trees

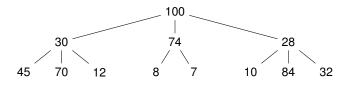
Binary Search Trees

Motivation

Let us come back on the belongsto function:

```
let rec belongsto (elt:\alpha) (t:\alpha bintree):bool = match t with 

| Empty \rightarrow false | Node (e,tl,tr) \rightarrow (e=elt) || belongsto elt tl || belongsto elt tr
```



How can we be sure that an element does not belong to the tree? \hookrightarrow one has to browse the whole tree (similarly to what would happen with a list)

Search time depends on the size of the tree

ightarrow solution consists in sorting the elements of the tree

Binary Search Tree: definition

Definition: Binary Search Tree (BST)

A binary search tree is a binary tree s.t. for every node of the tree of the form Node(elt,lst,rst), where e is the data carried out by the node, and lsb (resp. rsb) is the left (resp. rgb) sub tree of the node, we have:

- ▶ lst, rst are binary search trees
- elements of lst are all lesser than or equal to e
- e is (strictly) lesser than all elements in rst

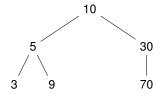
Remark

- Binary search trees suppose that the set of the elements of the tree has a total ordering relation
- ▶ "lesser than" in the definition is understood w.r.t. this ordering relation
- ► Elements can be of any type: int, string, students...as long as there is an ordering relation

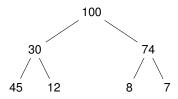
Binary Search Tree

(counter) Example

Example (A binary search tree)



Example (NOT a binary search tree)



Revisiting the belongsto function

We can exploit the property of binary search trees

Example (Does an element belong to a binary search tree?)

```
let rec belongsto (elt:\alpha) (t:\alpha bst):bool=
match t with

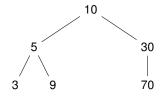
| Empty \rightarrow false
| Node (e, lbst, rbst) \rightarrow
(e=elt)
| (e>elt) && belongsto elt lbst
| (e<elt) && belongsto elt rbst
```

One subtree examined at each recursive call

Some sort of "dichotomic" search

An execution of belongsto

Let's search 9 in the following tree:



```
\begin{array}{ccc} & & \text{searching 9 in Node}(10,...,...) \\ 9 < 10 & \Rightarrow & \text{searching 9 in Node}(5,...,...) \\ 9 > 5 & \Rightarrow & \text{searching 9 in Node}(9,...,...) \\ 9 = 9 & \Rightarrow & \text{true} \end{array}
```

DEMO: Tracing belongsto 9 ...

Browsing a tree

Given a binary search tree, how to put the elements in order in a list? \hookrightarrow browsing the tree

When encountering a Node (elt, lst, rst), there are several possibilities according to the "moment" when elt is treated:

- place elt, then lst, then rst: prefix browsing
- ▶ place lst, then elt, then rst: infix browsing
- place lst, then rst, then elt: suffix browsing

Following the property of binary search trees, the infix browsing gives us the solution:

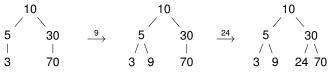
Insertion in a binary search tree

Insert the element as a leaf (simplest method)

Objective: insert an element elt in a binary search tree t

- preserve the binary search tree property
- insert the element as a leaf of the tree

Example (Inserting two elements)



Idea: recursively distinguish two cases

- ▶ t is empty, then by inserting elt we obtain Node(elt, Empty, Empty)
- ▶ t is not empty, then it is of the form Node(e,lbst,rbst), then
 - ▶ if elt <= e, then elt should be placed in lbst
 - ▶ if elt > e, then elt should be placed in rbst

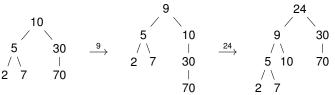
Insertion in a binary search tree

Insert the element as a root

Objective: insert an element elt in a binary search tree t

- preserve the binary search tree property
- insert the element as the root of the tree

Example (Inserting two elements)



Idea: proceed in two steps:

- "cut" the tree into two binary search subtrees 1 and r s.t.
 - ▶ 1 contains all elements smaller than elt
 - r contains all elements greater than elt
- Build the tree Node (elt,l,r)

Binary Search Tree

Let's practice insertion

Exercise: insertion as a lea

Define the function insert that inserts an element in a BST, as a leaf

Exercise: insertion as the root

Define the functions:

- cut that cuts a binary search tree as described before
- insert that inserts an element in a binary tree as the root, using cut

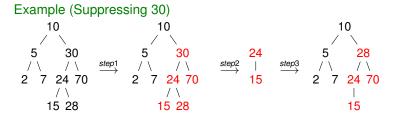
Exercise: Binary Search Tree creation

Define two functions <code>create_bst</code> that, given a list of elements create a binary search tree of the elements in the list, using the two insertion methods

Suppressing an element in a BST

Suppressing an element in elt a BST consists in:

- Identify the subtree Node(elt, lst, rst) (where suppression should occur)
- Suppress the greatest element max of 1st
 → we obtain a BST 1stprime
- 3. Build the tree Node(max,lstprime, rst)



Binary Search Tree

Let's practice suppression

Exercise: suppression in a tree

Define the functions:

- remove_max that remove the greatest element in a tree
 To ease the definition of the subsequent function, it is better if this function returns both the maximal element and the new tree
- suppression that suppresses an element in a BST

Exercise: Is a Binary Tree a Binary Search Tree?

Define the function is_bst that checks whether a binary tree is a BST

Conclusion

Summary:

About trees:

- ► Hierarchical "objects"
- Doubly recursive data type
- Two variants (binary trees and binary search trees) (there exist many others)
- Several functions to manipulate them